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Note to Students

This Trigonometry Handbook was developed primarily through work with a number of High
School and College Trigonometry classes. In addition, a number of more advanced topics have
been added to the handbook to whet the student’s appetite for higher level study.

One of the main reasons why | wrote this handbook was to encourage the student to wonder;
to ask “what about ...” or “what if ...”. | find that students are so busy today that they don’t
have the time, or don’t take the time, to seek out the beauty and majesty that exists in
Mathematics. And, it is there, just below the surface. So be curious and go find it.

The answers to most of the questions below are inside this handbook, but are seldom taught.

e Isthere a method I can learn that will help me recall the key points on a unit circle
without memorizing the unit circle?

e What’s the fastest way to graph a Trig function?

e Can |l convert the sum of two trig functions to a product of trig functions? How about
the other way around, changing a product to a sum?

e [sthere an easy way to calculate the area of a triangle if | am given its vertices as points
on a Cartesian plane?

e Don’t some of the Polar graphs in Chapter 9 look like they have been drawn with a
Spirograph? Why is that?

e Acycloid is both a brachistochrone and a tautochrone. What are these and why are
they important? (you will have to look this one up, but it is well worth your time)

e What is a vector cross product and how is it used?

e How do the properties of vectors extend to 3 dimensions, where they really matter?

Additionally, ask yourself:

e What trig identities can | create that | have not yet seen?

e What Polar graphs can | create by messing with trig functions? What makes a pretty
graph instead of one that just looks messed up?

e Can | come up with a simpler method of doing things than | am being taught?

e What problems can | come up with to stump my friends?

Those who approach math in this manner will be tomorrow’s leaders. Are you one of them?

Please feel free to contact me at mathguy.us@gmail.com if you have any questions or

comments.
Thank you and best wishes! Cover art by Rebecca Williams,
Earl Twitter handle: @jolteonkitty
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Mathguy.us — Developed specifically for math students from Middle School to College, based
on the author's extensive experience in professional mathematics in a business setting and in
math tutoring. Contains free downloadable handbooks, PC Apps, sample tests, and more.

http://www.mathguy.us/

Wolfram Math World — Perhaps the premier site for mathematics on the Web. This site
contains definitions, explanations and examples for elementary and advanced math topics.

http://mathworld.wolfram.com/

Khan Academy — Supplies a free online collection of thousands of micro lectures via YouTube
on numerous topics. It's math and science libraries are extensive.

www.khanacademy.org

Analyze Math Trigonometry — Contains free Trigonometry tutorials and problems. Uses Java
applets to explore important topics interactively.
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Schaum’s Outline

An important student resource for any high school or college math student is a Schaum’s
Outline. Each book in this series provides explanations of the various topics in the course and
a substantial number of problems for the student to try. Many of the problems are worked
out in the book, so the student can see examples of how they should be solved.

Schaum’s Outlines are available at Amazon.com, Barnes & Noble and other booksellers.
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Chapter 1 Functions and Special Angles

Introduction

What is Trigonometry?

The word “Trigonometry” comes from the Greek “trigonon” (meaning triangle)
and “metron” (meaning measure). So, simply put, Trigonometry is the study of r
the measures of triangles. This includes the lengths of the sides, the measures 0

of the angles and the relationships between the sides and angles. X

The modern approach to Trigonometry also deals with how right triangles interact with circles,
especially the Unit Circle, i.e., a circle of radius 1. Although the basic concepts are simple, the
applications of Trigonometry are far reaching, from cutting the required angles in kitchen tiles to
determining the optimal trajectory for a rocket to reach the outer planets.

Radians and Degrees
Angles in Trigonometry can be measured in either radians or degrees:

e There are 360 degrees (i.e., 360°) in one rotation around a circle. Although there are various
accounts of how a circle came to have 360 degrees, most of these are based on the fact that
early civilizations considered a complete year to have 360 days.

e Thereare 2w (~ 6.283) radians in one rotation around a circle. The
ancient Greeks defined 7 to be the ratio of the circumference of a r

C
circle to its diameter (i.e., 7 = 2 ). Since the diameter is double the A

radius, the circumference is 27 times the radius (i.e., C = 27r). One
radian is the measure of the angle made from wrapping the radius of a
circle along the circle’s exterior.

Measure of an Arc

One of the simplest and most basic formulas in Trigonometry provides the measure of an arc in terms
of the radius of the circle, r, and the arc’s central angle 6, expressed in radians. The formula is easily

derived from the portion of the circumference subtended by 6. .

Since there are 21 radians in one full rotation around the circle, the measure
of an arc with central angle 6, expressed in radians, is: g,

0 0
S=C-<—):2nr-(—)=r9 o) S=1r0
2T 2T
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Chapter 1 Functions and Special Angles

Angle Definitions

Basic Definitions

A few definitions relating to angles are useful when beginning the study of Trigonometry.

Angle: A measure of the space between rays with a common endpoint. An angle is typically
measured by the amount of rotation required to get from its initial

side to its terminal side.
L . L ) Terminal
Initial Side: The side of an angle from which its rotational Side

Angle
/ g

~—

measure begins.

Terminal Side: The side of an angle at which its rotational Vertex Initial Side

measure ends.

Vertex: The vertex of an angle is the common endpoint of the two rays that define the angle.

Definitions in the Cartesian (xy) Plane

When angles are graphed on a coordinate
system (Rectangular or Polar), a number of
additional terms are useful.

Polar
Standard Position: An angle is in standard Angle
position if its vertex is the origin (i.e., the
point (0, 0)) and its initial side is the Origin Polar Axis (positive x-axis)

positive x-axis.
Polar Axis: The Polar Axis is the positive x-axis. It is the initial side of all angles in standard position.
Polar Angle: For an angle in standard position, its polar angle is the angle measured from the polar

axis to its terminal side. If measured in a counter-clockwise direction, the polar angle is positive; if
measured in a clockwise direction, the polar angle is negative.

Reference Angle: For an angle in standard position, its reference angle is the angle between 0° and
90° measured from the x-axis (positive or negative) to its terminal side. The reference angle can be
0°; it can be 90°; it is never negative.

Coterminal Angle: Two angles are coterminal if they are in standard position and have the same
terminal side. For example, angles of measure 50° and 410° are coterminal because 410° is one full
rotation around the circle (i.e., 360°), plus 50°, so they have the same terminal side.

Quadrantal Angle: An angle in standard position is a quadrantal angle if its terminal side lies on
either the x-axis or the y-axis.

Version 2.2 Page 8 of 109 June 12, 2018



Chapter 1

Trigonometric Functions
(on the x- and y-axes)

Pythagorean Identities
(for any angle 0)

sin?6 + cos?6 =1
sec’6 = 1+ tan?#

csc’8 = 1+ cot?6

Cofunctions (in Quadrant I)
) _ T
sin @ —cos(E—Q) S
T
tan@zcot(i—e) =

secH =csc(g—9) S

Version 2.2

Trigonometric Functions

Functions and Special Angles

1
sinf == sing = ——
csco
X 1
cosO =— cos0 =
r secO
y 1 sin©
tan0 = = tan = —— tan 0 =
X cotO cos©
X 1 cos 0
cotf =— cotO = cotO = —
y tan 0 sin 6
secH =— secH =
cos 0O
r
cscO =— cscO = ——
y sin 0
Sine-Cosine Relationship Key Angles

sin (9 + %) = cos 0

sin® = cos (6 - g)

cos 8 = sin (g— 9)
cotf = tan (g - 9)

cscl = sec (% — 9)

Page 9 of 109

(180° = mr radians)

0° = 0 radians

T
30° = 3 radians

45° = = radi
= 4 radlans

T
60° = 3 radians

T
90° = 5 radians
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Chapter 1 Functions and Special Angles

The Unit Circle

The Unit Circle diagram below provides x- and y-values on a circle of radius 1 at key angles. At any
point on the unit circle, the x-coordinate is equal to the cosine of the angle and the y-coordinate is
equal to the sine of the angle. Using this diagram, it is easy to identify the sines and cosines of angles
that recur frequently in the study of Trigonometry.

(0,1)
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Chapter 1

Trigonometric Functions (Right Triangle)

Functions and Special Angles

Trigonometric Functions and Special Angles

A SOH-CAH-TOA
sin = _Opposite sind = - sinB = -
hypoteneuse
C ,
d t
b cos = _fajacent CosA = - cosB = -
hypoteneuse
it
_l tan = % tan4d = - tanB = =
C 5 B g
Special Angles
Trig Functions of Special Angles (0)
Radians Degrees sin 0 cos 0 tan 0
0 Va Vo
0 0° 0 _y A =0
2 2 N
71'/6 300 \/I . 1 \/§ \/T . \/§
2 2 2 V3 3
s 2 2 V2
2 2
3
m/, 60° V3 vi_1 B3
2 2 2 Vi
”/2 90° E —1 ﬂ PN undefined
2 2

Note the patterns in the above table: In the sine column, the numbers 0 to 4 occur in sequence

under the radical! The cosine column is the sine column reversed. Tangent = sine <+ cosine.
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Chapter 1 Functions and Special Angles

Trigonometric Function Values in Quadrants Il, lll, and IV

In quadrants other than Quadrant |, trigonometric values for angles are calculated in the following

manner:

e Draw the angle 8 on the Cartesian Plane. Signs of Trig Functions
by Quadrant
e Calculate the measure of the reference angle

from the x-axis to . SR -
e Find the value of the trigonometric function of i cos+
tan - tan +
the angle in the previous step.
X
e Assigna “+” or “—“sign to the trigonometric
value based on the function used and the s - sin -
o ) cos - cos +
quadrant @ is in (from the table at right). tan + —_—
y
Examples:
120°
0 in Quadrant Il - Calculate: (180° — m<8)
For 8 = 120°, the reference angle is 180° — 120° = 60°
60° sin 60° = g, so: sin120° = ?
210°
0 in Quadrant Il — Calculate: (m«6 — 180°)
For 8 = 210°, the reference angle is 210° — 180° = 30°
cos 30° =£, so: cos 210° = — 3 —
2 2 -

@ in Quadrant IV - Calculate: (360° — m<6)
For 8 = 315°, the reference angle is 360° — 315° = 45°
tan45° =1,so0: tan315°=—1
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Chapter 1 Functions and Special Angles

Problems Involving Trig Function Values in Quadrants I, Ill, and IV

A typical problem in Trigonometry is to find the value of one or more Trig functions based on a set of
constraints. Often, the constraints involve the value of another Trig function and the sign of yet a
third Trig Function. The key to solving this type of problem is to draw the correct triangle in the
correct quadrant.

A couple of examples will illustrate this process.

2
Example 1.1: sinf = —5, tan @ > 0. Find the values of secd and cot@.

Notice that sinf8 < 0, tan8 > 0. Therefore, 8 is in @3, so we draw the angle in that quadrant.

In Q3, y is negative; 1 is always positive. Since sinf === ——, welet y = -2, r =
Using the Pythagorean Theorem, we calculate the length of the horizontal T
leg of the triangle: /32 — (=2)2 = /5. Since the angle isin Q3, x is C 1 \5 :
negative, so we must have x = — V5. T 91
-2 -1
Th H_L_Z_i__3_\/§ B T
en, sec " cos® x -5 5 2

And, cot =——=—=—— = —
ta

9
Example 1.2: cotf = — " cos 8 < 0. Find the value of csc@ and cos 6.

Notice that cot8 < 0, cos 8 < 0. Therefore, 6 isin @2, so we draw the angle in that quadrant.

X 9
In Q2, x is negative, and y is positive. Since cot® =; = — Z’ welet x = -9, y =4.

Using the Pythagorean Theorem, we can calculate the length of the

hypotenuse of the triangle: r = /(—9)? + 4% = V97.

1 r V97
Then, csc =——=— = —
sinf y 4
And 0 X -9 —94/97
nd, cosf =—=— =
r V97 97
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Chapter 1 Functions and Special Angles

Problems Involving Angles of Depression and Inclination

A common problem in Trigonometry deals with angles of depression or inclination. An angle of
depression is an angle below the horizontal at which an observer must look to see an object. An
angle of inclination is an angle above the horizontal at which an observer must look to see an object.

Example 1.3: A building 185 feet tall casts a 60 foot long shadow. If a person looks down from the
top of the building, what is the measure of the angle of depression? Assume the person's eyes are 5
feet above the top of the building.

The total height from which the person looks down upon the shadow is: 185 + 5 = 190 ft. We
begin by drawing the diagram below, then consider the trigonometry involved.

t °—60—03158
anx® =55 =0.

x =tan"10.3158 = 17.5°

Angle of
Depression

190 ft.
The angle of depression is the complement of x°.

6 =90°—17.5°=72.5°

60 ft.

Example 1.4: A ship is 300 meters from a vertical cliff. The navigator uses a sextant to determine the
angle of inclination from the deck of the ship to the top of the cliff to be 62.4°. How far above the
deck of the ship is the top of the cliff? What is the distance from the deck to the top of the cliff?

We begin by drawing the diagram below, then consider the trigonometry involved.

a) To find how far above the deck the top of the cliff is (y):

o=
tan 62.4° = 300
r y
y = 300 tan 62.4° = 573.8 meters
Angle of
Inclination
S {Se O b) To find the distance from the deck to the top of the cliff (r):
300 m.
300
Cc0Ss 62.4° = —
r

300

r =——— = 647.5 meters
C0S 62.4°
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Chapter 2 Graphs of Trig Functions

Graphs of Basic (Parent) Trigonometric Functions

| U | U K
-Srdz -s;(,fz X ,nl,fz 0 n;’z iz 5?(‘:’2 ek an/2 E ﬂ‘fz 0 w2 a2 2 sz

A AN A

M

The sine and cosecant functions are reciprocals. So:

sinf = and cscO = —
csch sin 6
cos B secB
1 U | U
1
F T T J T 4 r T T T T T
s1/2 o -3 n 2 0 b 2 m sn/2 512 e -31/2 -n 2 o nj2 n 32 m 5n/2
-1
71 m | m

The cosine and secant functions are reciprocals. So:

d 0=
secH an see cos @

cosf =

tanB cot®

s/2 -3n/2 n 2 0 ni2 L 32 n snf2 -5 3 -an/! E /2 0 /2 7 3/, 2% sm/2

The tangent and cotangent functions are reciprocals. So:

tan@ =
cotf tan @
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Chapter 2

Graphs of Trig Functions

Graphs of Basic (Parent) Trigonometric Functions

It is instructive to view the parent trigonometric functions on the same axes as their reciprocals.

Identifying patterns between the two functions can be helpful in graphing them.

Looking at the cosine and secant functions,
we see that they intersect at their maximum
and minimum values (i.e., when y = 1). The
vertical asymptotes (not shown) of the secant
function occur when the cosine function is
zero.

Looking at the sine and cosecant functions,
we see that they intersect at their maximum
and minimum values (i.e., when y = 1). The
vertical asymptotes (not shown) of the
cosecant function occur when the sine
function is zero.

w

S

Looking at the tangent and cotangent
functions, we see that they intersect when
sinx = cosx (i.e.,, atx = g +nm, nan
integer). The vertical asymptotes (not
shown) of the each function occur when the
other function is zero.
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Chapter 2 Graphs of Trig Functions

Characteristics of Trigonometric Function Graphs

All trigonometric functions are periodic, meaning that they repeat the pattern of the curve (called a
cycle) on a regular basis. The key characteristics of each curve, along with knowledge of the parent
curves are sufficient to graph many trigonometric functions. Let’s consider the general function:

f(x)=A-trig(Bx —C)+D

where A, B, C and D are constants and “trig” is any of the six trigonometric functions (sine, cosine,
tangent, cotangent, secant, cosecant).

Amplitude

| f(x) =3sin(x) +1
Amplitude is the measure of the distance of peaks and troughs 1 Amplitude =3
from the midline (i.e., center) of a sine or cosine function;
amplitude is always positive. The other four functions do not
have peaks and troughs, so they do not have amplitudes. For

the general function, f(x), defined above, amplitude = |A|. / | %W” | 3"\/

Period

Period is the horizontal width of a single cycle or wave, i.e., the distance it travels before it repeats.
Every trigonometric function has a period. The periods of the parent functions are as follows: for
sine, cosine, secant and cosecant, period = 2m; for tangent and cotangent, period = .

For the general function, f(x), defined above,

5|
. . . 1
parent function period f(x) 7 sin(5%)
. .
. Period = 4 F .
eriod=4mM T F =i
requency o

Frequenc ’\ 1:
q Y [ S — T

period =

. . . -3m =21 - ™ 2 ! 3‘17 ! g
Frequency is most useful when used with the sine and

4

cosine functions. It is the reciprocal of the period, i.e.,

~
N

] 4m
1 2]

frequency = .
4 y period

Frequency is typically discussed in relation to the sine and cosine functions when considering
harmonic motion or waves. In Physics, frequency is typically measured in Hertz, i.e., cycles per
second. 1Hz = 1 cycle per second.

B
For the general sine or cosine function, f(x), defined above, frequency = oy
T
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Chapter 2

Phase Shift

Graphs of Trig Functions

Phase shift is how far has the function been shifted horizontally
(left or right) from its parent function. For the general function,
f(x), defined above,

C
phase shift = —.
B

A positive phase shift indicates a shift to the right relative to the

graph of the parent function; a negative phase shift indicates a shift

2_' f(x) = sin(2x - m)

™
1 Phase Shill = E

to the left relative to the graph of the parent function.

A trick for calculating the phase shift is to set the argument of the trigonometric function equal to

zero: (Bx — C) = 0, and solve for x. The resulting value of x is the phase shift of the function.

Vertical Shift

Vertical shift is the vertical distance that the midline of a curve lies
above or below the midline of its parent function (i.e., the x-axis).
For the general function, f(x), defined above, vertical shift = D.
The value of D may be positive, indicating a shift upward, or
negative, indicating a shift downward relative to the graph of the
parent function.

| f(x) = sin(x) + 2

+ Vertical Shift = 2

T
-T

Putting it All Together

The illustration below shows how all of the items described above combine in a single graph.

51

1
f(x)=3 sin(Ex +m)+2

$Vertica[ Shift=2

1 1 t
am am 4m

Period = 4mn Frequency = =
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Chapter 2 Graphs of Trig Functions
Summary of Characteristics and Key Points — Trigonometric Function Graphs
Function: Sine Cosine Tangent Cotangent Secant Cosecant
Parent Function y = sin(x) y = cos(x) y = tan(x) y = cot(x) vy = sec(x) y = csc(x)
nm nm
Domain (=00, ) (— o0, ) (—0, ) except —, (=00, ) except n, (—00, 0) except —, (=00, ) except n,
where 7 is oddz where n is an Integer where 7 is oddz where n is an Integer
Vertical Asymptotes none none x = 2% \where nis odd x = nm, where n is an X = El where n is odd x = nm, where n is an
2’ Integer 2 Integer

Range [-1,1] [-1,1] (—00,) (=0, ) (=00, -1] U [1, ) (=00, -1] U [1, )
Period 2m 2m T T 2m 2m
x-intercepts nim, where n is an Integer midway between midway between none none

nm .
Y where n is odd

asymptotes

asymptotes

Odd or Even Function(l)

0Odd Function

Even Function

0Odd Function

0Odd Function

Even Function

0Odd Function

General Form

y =Asin(Bx —C) + D

y=Acos(Bx —C)+D

y =Atan(Bx —C) + D

y=Acot(Bx—C)+D

y =Asec(Bx —C) +D

y=Acsc(Bx—C)+D

e et | W 250 50 550 o g
f(x) when x = PS @ D A+ D D vertical asymptote A+D vertical asymptote
f(x) when x = PS+%P A+D D A+D A+D vertical asymptote A+D

f(x) when x = PS + %P D -A+D vertical asymptote D -A+D vertical asymptote
f(x) when x = PS + %P —-A+D D -A+D —-A+D vertical asymptote —-A+D
f(x) when x =PS+ P D A+D D vertical asymptote A+D vertical asymptote

Notes:

(1) An odd function is symmetric about the origin, i.e. f(—x) = —f(x). An even function is symmetric about the y-axis, i.e., f(—x) = f(x).

(2) All Phase Shifts are defined to occur relative to a starting point of the y-axis (i.e., the vertical line x = 0).

Version 2.2
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Chapter 2

Graph of a General Sine Function

General Form

The general form of a sine functionis: y = A sin(Bx — C) + D.

In this equation, we find several parameters of the function which will help us graph it. In particular:

Graphs of Trig Functions

e Amplitude: Amp = |A|. The amplitude is the magnitude of the stretch or compression of the

function from its parent function: y = sinx.

21
e Period: P = 3 The period of a trigonometric function is the horizontal distance over which

the curve travels before it begins to repeat itself (i.e., begins a new cycle). For a sine or cosine

function, this is the length of one complete wave; it can be measured from peak to peak or

from trough to trough. Note that 21t is the period of y = sin x.

c
® Phase Shift: PS = '3 The phase shift is the distance of the horizontal translation of the

function. Note that the value of C in the general form has a minus sign in front of it, just like h

does in the vertex form of a quadratic equation: y = (x — h)? + k. So,

O A minus sign in front of the € implies a translation to the right, and

O A plussignin front of the C implies a implies a translation to the left.

e \ertical Shift: VS = D. This is the distance of the vertical translation of the function. This is

equivalent to k in the vertex form of a quadratic equation: y =

Example 2.1: y = 4 sin (Zx — zn) +3

The midline has the equation y = D. In this example, the midline

(x — h)? + k.

is: y = 3.

one period I one period | one period |

| | |
i .

ramplitude
curve
mid-line

vertical

shift | amplitude

-

%

2 i

| oneperiod
|

1

For this example:

3
A=4;, B=2; C:En; D=3

Amplitude: Amp = |A| = |4|

i 21 21
Period: P=—=—=m
B 2
Vertical Shift: VS =D =3

=4
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Chapter 2 Graphs of Trig Functions

Graphing a Sine Function with No Vertical Shift: y = Asin(Bx — C)

Example:

y = 4sin (Zx —;n).

A wave (cycle) of the sine function has three zero points (points on the x-axis) —
at the beginning of the period, at the end of the period, and halfway in-between.

Step 1: Phase Shift:

The first wave begins at the
point

Step 2: Period: P = 2;".

The first wave ends at the
point P units to the right of
where the wave begins.

‘i 3
24 ETI
( 2
; The point is:
/ P="=2"—q Thefirst
B 2

® + L
n ™ I aw

) one period |

wave ends at the point:

(rmo)=(ns)

Step 3: The third zero point
is located halfway between
the first two.

P
L

+ one period |

The point is:

(£5%,0) =

Step 4: The y-value of the \ The point is:
point halfway between the I PO I B PR " 5
hd d ¥ s su + -1r
left and center zero points is = = - 4 —
" . one period | < 2 ) 4) (Ttl 4)
Step 5: The y-value of the I The point is:

point halfway between the
center and right zero points

is“— A”

(757 4) -

Step 6: Draw a smooth
curve through the five key
points.

This will produce the graph
of one wave of the function.

Step 7: Duplicate the wave
to the left and right as
desired.

Version 2.2

| one period

Note: If D # 0, all points
on the curve are shifted
vertically by D units.
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Chapter 2

Graphs of Trig Functions

Graph of a General Cosine Function

General Form

The general form of a cosine functionis: y = A cos(Bx — C) + D.

In this equation, we find several parameters of the function which will help us graph it. In particular:

e Amplitude: Amp = |A|. The amplitude is the magnitude of the stretch or compression of the

function from its parent function: y = cos x.

21
e Period: P = 3 The period of a trigonometric function is the horizontal distance over which

the curve travels before it begins to repeat itself (i.e., begins a new cycle). For a sine or cosine

function, this is the length of one complete wave; it can be measured from peak to peak or

from trough to trough. Note that 21t is the period of y = cos x.

c
® Phase Shift: PS = '3 The phase shift is the distance of the horizontal translation of the

function. Note that the value of C in the general form has a minus sign in front of it, just like h
does in the vertex form of a quadratic equation: y = (x — h)? + k. So,

O A minus sign in front of the € implies a translation to the right, and
O A plussignin front of the C implies a implies a translation to the left.

e \ertical Shift: VS = D. This is the distance of the vertical translation of the function. This is
equivalent to k in the vertex form of a quadratic equation: y = (x — h)% + k.

Example 2.2: y = 4 cos (Zx — zn) +3

The midline has the equation y = D. In this example, the midline

is: y = 3. For this example:
T - sod iod 3
| .oneperiod | oneperiod | oneperiod | A=4 B=2: C=—-—m: D=3
| - I ] l ) ) 2 )
/ Amplitude: Amp = |A| = |4| = 4
\ J[r' F amplitude
) \ f . 2n 2w
curve \ f Period: P=—=—=m
mid-line st Mo Lol B 2
-
\
vertical ‘\ /
shift \ ;"j Famplitude
e || cdpeal ) Vertical Shift: VS =D =3
1 |
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Chapter 2 Graphs of Trig Functions

Graphing a Cosine Function with No Vertical Shift: y = A cos(Bx — ()

A wave (cycle) of the cosine function has two maxima (or minima if A < 0) —

one at the beginning of the period and one at the end of the period —and a Example:

minimum (or maximum if A < 0) halfway in-between.

y = 4cos (Zx - grr)

Step 3: The y-value of the
point halfway between those
in the two steps above is
"yt

Step 1: Phase Shift: >

® A=4
The first wave begins at the z
point . L2 T & The point is:
Step 2: Period: P = %n. oneperiod | P = 2?" = 2?" =1t. The first
The first wave ends at the : \ wave ends at the point:
point P units to the right of = ET TN E 7
where the wave begins. F ( T 4) - (Z T 4)

°

The point is:

(552, -4) = (my

Step 4: The y-value of the i IW' The point is:

point halfway between the : ’ s

left and center extrema is \, : L < ! Zﬂ, 0) = (m, 0)
"0". i ) =z = 2

Step 5: The y-value of the 'W' The point is:

point halfway between the : ’ g

center and right extrema is Pl P ./m " <H’ 0) - (E 7, 0)
"0". s T T 2 2

Step 6: Draw a smooth
curve through the five key
points.

This will produce the graph
of one wave of the function.

Step 7: Duplicate the wave Im‘
to the left and right as N . N k Note: If D # 0, all points
desired. : £ yof on the curve are shifted
; \\\ . \\ 2 vertically by D units.
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Chapter 2

Graphs of Trig Functions

Graph of a General Tangent Function

General Form

The general form of a tangent functionis: y = A tan(Bx — C) + D.

In this equation, we find several parameters of the function which will help us graph it. In particular:

e Scale factor: |A|. The tangent function does not have amplitude. |A] is the magnitude of the
stretch or compression of the function from its parent function: y = tan x.

Y3
e Period: P = I The period of a trigonometric function is the horizontal distance over which

the curve travels before it begins to repeat itself (i.e., begins a new cycle). For a tangent or
cotangent function, this is the horizontal distance between consecutive asymptotes (it is also
the distance between x-intercepts). Note that 1t is the period of y = tan x.

c
® Phase Shift: PS = B The phase shift is the distance of the horizontal translation of the

function. Note that the value of C in the general form has a minus sign in front of it, just like h
does in the vertex form of a quadratic equation: y = (x — h)? + k. So,

O A minus sign in front of the C implies a translation to the right, and

O A plussignin front of the C implies a implies a translation to the left.

e Vertical Shift: VS = D. This is the distance of the vertical translation of the function. This is
equivalent to k in the vertex form of a quadratic equation: y = (x — h)? + k.

Example 2.3: y = 4 tan (Zx — 311) +3

The midline has the equation y = D. In this example, the midline

is: y = 3.

Note that, for the
tangent curve, we

one

|
; one | one
!| pcriodl | periodljI | periudl |

typically graph half
of the principal
cycle at the point

curve

of the phase shift, mid-line
and then fill in the =3 ane
shift period

other half of the
cycle to the left I I
(see next page).

¢
|
{

| L

| scale
| factor
|

For this example:
3
A=4; B=2; C=ET[; D=3

Scale Factor: |A| = |4] = 4

N | =
3

11' 11'
Period: P =— = —
B 2

Vertical Shift: VS =D =3

Version 2.2
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Chapter 2 Graphs of Trig Functions

Graphing a Tangent Function with No Vertical Shift: y = Atan(Bx — ()

A cycle of the tangent function has two asymptotes and a zero point halfway in- Example:
between. It flows upward to the right if A >0 and downward to therightif A <0.  ; — 4¢an (Zx _ En).
2

Step 1: Phase Shift:

The first cycle begins at the
“zero” point

3
2

2

The point is:

Step 2: Period: P = %.
Place a vertical asymptote
%P units to the right of the

beginning of the cycle.

Step 3: Place a vertical
1 .
asymptote EP units to the

left of the beginning of the
cycle.

one

period

I ™ 1 1 1
P=—=-=-m. -P=-m.
B 2 2 2 4

The right asymptote is at:

1
X = +-m=T7
4

The left asymptote is at:

Step 4: The y-value of the
point halfway between the
zero point and the right
asymptote is "A".

one
period

Step 5: The y-value of the
point halfway between the
left asymptote and the zero
pointis" — A".

one

period

Pt

1 1
X = —-m=-7
4 2
The point is:
+ 1 -
( : ,4> ~ (In4)
The point is:

(5 4) =Gy

Step 6: Draw a smooth
curve through the three key
points, approaching the
asymptotes on each side.

one
period

This will produce the graph
of one cycle of the function.

Step 7: Duplicate the cycle
to the left and right as
desired.

Version 2.2

Note: If D # 0, all points
on the curve are shifted
vertically by D units.
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Chapter 2

General Form

The general form of a cotangent functionis: y = A cot(Bx — C) + D.

Graphs of Trig Functions

Graph of a General Cotangent Function

In this equation, we find several parameters of the function which will help us graph it. In particular:

e Scale factor: |A|. The cotangent function does not have amplitude. |A| is the magnitude of

the stretch or compression of the function from its parent function: y = cotx.

Y3
e Period: P = I The period of a trigonometric function is the horizontal distance over which

the curve travels before it begins to repeat itself (i.e., begins a new cycle). For a tangent or

cotangent function, this is the horizontal distance between consecutive asymptotes (it is also

the distance between x-intercepts). Note that 1 is the period of y = cotx.

c
® Phase Shift: PS = B The phase shift is the distance of the horizontal translation of the

function. Note that the value of C in the general form has a minus sign in front of it, just like h

does in the vertex form of a quadratic equation: y = (x — h)? + k. So,

O A minus sign in front of the C implies a translation to the right, and

O A plussignin front of the C implies a implies a translation to the left.

e \ertical Shift: VS = D. This is the distance of the vertical translation of the function. This is

equivalent to k in the vertex form of a quadratic equation: y = (x — h)? + k.

Example 2.4: y = 4 cot (Zx — 311) +3

The midline has the equation y = D. In this example, the midline

is: y = 3.

Note that, for the
cotangent curve,
we typically graph
the asymptotes
first, and then
graph the curve
between them (see
next page).

Version 2.2

Lmlle LOH‘E
I eriod l eriod l

\ one
5perim.|

curve
mid-line

vertical
shift

For this example:

3
A=4; B=2; C=ET[; D=3
Scale Factor: |A| = |4] = 4

11' 11'
Period: P =— = —
B 2

Il
N | =
3

Vertical Shift: VS =D =3
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Chapter 2 Graphs of Trig Functions

Graphing a Cotangent Function with No Vertical Shift: y = A cot(Bx — C)

A cycle of the cotangent function has two asymptotes and a zero point halfway in- Example:
between. It flows downward to the right if A >0 and upward to therightif A <0. — 4cot (Zx _ ;n)

Step 1: Phase Shift:

21'L'
5 The left

asymptote is at: x = zn

w T 1
P=2=Z=_gq
B 2 2

The right asymptote is at:

3 1 5
X=-T+-M=-T
4 2 4

halfway between the two

asymptotes.

<
Place a vertical asymptote
Step 2: Period: P = g. period
Place another vertical <
asymptote P units to the . E:
right of the first one.
Step 3: A zero point exists Fesiod

3 .5
The point is: 4

Step 4: The y-value of the
point halfway between the
left asymptote and the zero
pointis "A".

The point is:

3

(15 4) =G

Step 5: The y-value of the
point halfway between the
zero point and the right
asymptoteis" — A".

one

period
.

The point is:

(5 -4)=my

Step 6: Draw a smooth
curve through the three key
points, approaching the
asymptotes on each side.

This will produce the graph
of one cycle of the function.

Step 7: Duplicate the cycle
to the left and right as
desired.

Version 2.2

one
period | |

Note: If D # 0, all points
on the curve are shifted
vertically by D units.
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Chapter 2

Graph of a General Secant Function

General Form

The general form of a secant functionis: y = A sec(Bx — C) + D.

Graphs of Trig Functions

In this equation, we find several parameters of the function which will help us graph it. In particular:

e Scale factor: |A|. The secant function does not have amplitude. |A| is the magnitude of the

stretch or compression of the function from its parent function: y = sec x.

21
e Period: P = 3 The period of a trigonometric function is the horizontal distance over which

the curve travels before it begins to repeat itself (i.e., begins a new cycle). For a secant or

cosecant function, this is the horizontal distance between consecutive maxima or minima (it is

also the distance between every second asymptote). Note that 21 is the period of y = secx.

c
® Phase Shift: PS = '3 The phase shift is the distance of the horizontal translation of the

function. Note that the value of C in the general form has a minus sign in front of it, just like h

does in the vertex form of a quadratic equation: y = (x — h)? + k. So,

O A minus sign in front of the € implies a translation to the right, and

O A plussignin front of the C implies a implies a translation to the left.

e \ertical Shift: VS = D. This is the distance of the vertical translation of the function. This is

equivalent to k in the vertex form of a quadratic equation: y = (x — h)? + k.

Example 2.5: y = 4 sec (Zx — zn) +3

The midline has the equation y = D. In this example, the midline

is: y = 3.

One cycle of the secant curve contains two U-shaped curves, one

opening up and one opening down.

For this example:
3
A=4; B=2; C=ET[; D=3

Scale Factor: |A| = |4] = 4

d
E_\_ perlo
T . 21 21
ok ; Period: P=—=—=m
curve A scale B 2
mid-line i factor
verticgl V'~ T TP T TP TIm AT AT E T T T T
shift | | t ‘ .
ETRE k T . < one -
Af /| 1 period | i
Ry | J . .
1 / / I Vertical Shift: VS =D =3
e !
51 |
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Chapter 2

Graphs of Trig Functions

Graphing a Secant Function with No Vertical Shift: y = Asec(Bx — ()

A cycle of the secant function can be developed by first plotting a cycle of the

corresponding cosine function because secx =

cosx’

The cosine function’s zero points produce asymptotes for the secant function.

Maxima for the cosine function produce minima for the secant function.
Minima for the cosine function produce maxima for the secant function.
Secant curves are U-shaped, alternately opening up and opening down.

Step 1: Graph one wave of
the corresponding cosine ‘ e T
function.

y =Acos(Bx — C)

Step 2: Asymptotes for the
secant function occur at the : o B

zero points of the cosine . / \ :

function.

Step 3: Each maximum of
the cosine function | perod | o
represents a minimum for '
the secant function.

Step 4: Each minimum of
. . 5 one

the cosine function : S il i

represents a maximum for :

the secant function. ; \

Step 5: Draw smooth U- : | \
shaped curves through each :
key point, approaching the s : N SR R
asymptotes on each side. f/.\

Step 6: Duplicate the cycle ! .‘ j \ '

to the left and right as 3 .

desired. Erase the cosine e S I T
function if necessary. “ /’\

Version 2.2 Page 29 of 109

Example:

y = 4sec (Zx — ;n)

The equation of the
corresponding cosine
function for the example is:

y = 4cos(2x—2n)

The zero points occur at:
(1,0) and G T, 0)
Secant asymptotes are:

3
X=T1 andngn

Cosine maxima and,
therefore, secant minima are

at: and

The cosine minimum and,
therefore, the secant

. . 5
maximum is at: (Zn, —4)

This will produce the graph
of one cycle of the function.

Note: If D # 0, all points
on the curve are shifted
vertically by D units.
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Chapter 2 Graphs of Trig Functions

Graph of a General Cosecant Function

General Form

The general form of a cosecant functionis: y = A csc(Bx — C) + D.

In this equation, we find several parameters of the function which will help us graph it. In particular:

Scale factor: |A|. The cosecant function does not have amplitude. |A] is the magnitude of
the stretch or compression of the function from its parent function: y = cscx.

21
Period: P = 3 The period of a trigonometric function is the horizontal distance over which

the curve travels before it begins to repeat itself (i.e., begins a new cycle). For a secant or
cosecant function, this is the horizontal distance between consecutive maxima or minima (it is
also the distance between every second asymptote). Note that 21 is the period of y = cscx.

c
Phase Shift: PS = '3 The phase shift is the distance of the horizontal translation of the

function. Note that the value of C in the general form has a minus sign in front of it, just like h
does in the vertex form of a quadratic equation: y = (x — h)? + k. So,

O A minus sign in front of the € implies a translation to the right, and

O A plussignin front of the C implies a implies a translation to the left.

Vertical Shift: VS = D. This is the distance of the vertical translation of the function. This is
equivalent to k in the vertex form of a quadratic equation: y = (x — h)? + k.

Example 2.6: y = 4 csc (Zx — zn) +3

The midline has the equation y = D. In this example, the midline

is: y = 3.

One cycle of the cosecant curve contains two U-shaped curves, one
opening up and one opening down.

For this example:

3
A=4; B=2; C=ET[; D=3

vertical { 2t
__shift T

I Scale Factor: |A| = |4] = 4

[ a :;'.one |
;iyeriod

Period: P 21 21
eriod: P=—=—=m
curve scale B 2

mid-line *|

™ 1 s A, &
2

2l

—rs |

=

(1]

=

=

=

="
—l—]

& Vertical Shift: VS =D =3
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A cycle of the cosecant function can be developed by first plotting a cycle of the

corresponding sine function because cscx =

Chapter 2

Graphs of Trig Functions

Graphing a Cosecant Function with No Vertical Shift: y = A csc(Bx — ()

sinx’
The sine function’s zero points produce asymptotes for the cosecant function.

Maxima for the sine function produce minima for the cosecant function.

Minima for the sine function produce maxima for the cosecant function.

Cosecant curves are U-shaped, alternately opening up and opening down.

Step 1: Graph one wave of
the corresponding sine
function.

y = Asin(Bx — C)

Step 2: Asymptotes for the
cosecant function occur at
the zero points of the sine
function.

Step 3: Each maximum of
the sine function represents
a minimum for the cosecant
function.

Step 4: Each minimum of
the sine function represents
a maximum for the cosecant
function.

Step 5: Draw smooth U-
shaped curves through each
key point, approaching the
asymptotes on each side.

Step 6: Duplicate the cycle
to the left and right as
desired. Erase the sine
function if necessary.

Version 2.2

Example:

y = 4csc(2x—;n).

The equation of the
corresponding sine function
for the example is:

y = 4sin(2x—2n)

one
period

& & Y

;/i/z-'g\g

The zero points occur at:

(37.0).(5m0). (Gm0)
Cosecant asymptotes are:

3 5 7
X=-T, X=-T, X =-T
4 4 4

The sine maximum and,
therefore, the cosecant
minimum is at:

The sine minimum and,
therefore, the cosecant

. . 3
maximum is at: (En, —4)

This will produce the graph
of one cycle of the function.

Note: If D # 0, all points
on the curve are shifted
vertically by D units.
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Chapter 2 Graphs of Trig Functions

Simple Harmonic Motion

In Physics, Simple Harmonic Motion is an oscillating motion (think: repeating up and down motion)
where the force applied to an object is proportional to and in the opposite direction of its
displacement. A common example is the action of a coiled spring, which oscillates up and down
when released. Such motion can be modeled by the sine and cosine functions, using the following
equations (note: w is the lower case Greek letter “omega,” not the English letter w):

Harmonic motion equations: d =acoswt or d = asinwt

. 2m
Period: —
w

1 w

— =— or w=2nf with w >0
period 2m

Frequency: f =

Situations in which an object starts at rest at the center of its oscillation, or at rest, use the sine
function (because sin 0 = 0); situations in which an object starts in an up or down position prior to its
release use the cosine function (because cos 0 = 1).

Example 2.7: An object is attached to a coiled spring. The object is pulled up and then released. If
the amplitude is 5 cm and the period is 7 seconds, write an equation for the distance of the object
from its starting position after t seconds.

The spring will start at a y-value of +5 (since it is pulled up), and oscillate between +5 and —5
(absent any other force) over time. A good representation of this would be a cosine curve with
lead coefficient a = +5.

The period of the function is 7 seconds. So, we get:

11 d 9mf =2 1 2m
f_period_7 an ©=2nf =2m 7 7

The resulting equation, then, is: d = 5cos (2777 t)

Example 2.8: An object in simple harmonic motion has a frequency of 1.5 oscillations per second and
an amplitude of 13 cm. Write an equation for the distance of the object from its rest position after t
seconds.

Assuming that distance = 0 attime t = 0, it makes sense to use a sine function for this
problem. Since the amplitude is 13 cm, a good representation of this would be a sine curve with
lead coefficient a = 13. Note that a lead coefficient a = —13 would work as well.

Recalling that w = 2nf, with f = 1.5 weget: w = 2 - 1.5 = 3.

The resulting equations, then, are: d = 13sin(3nt) or d = —13sin(3nt)
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Chapter 3 Inverse Trigonometric Functions

Inverse Trigonometric Functions

Inverse Trigonometric Functions

Inverse trigonometric functions are shown with a " — 1" exponent or an “arc” prefix. So, the inverse
sine of x may be shown as sin™!(x) or arcsin(x). Inverse trigonometric functions ask the question:
which angle 6 has a function value of x? For example:

0 = sin~1(0.5) asks which angle has a sine value of 0.5. It is equivalent to: sin8 = 0.5.

6 =arctan(1) asks which angle has a tangent value of 1. It is equivalent to: tan 8 = 1.

Principal Values of Inverse Trigonometric Functions

There are an infinite number of angles that answer the above Locations of Principal Values
. . . . . of Inverse Trig Functions
guestions, so the inverse trigonometric functions are referred to as
multi-valued functions. Because of this, mathematicians have defined ¥ e
sin

a principal solution for problems involving inverse trigonometric aa cos™ 0
functions. The angle which is the principal solution (or principal value) tan' @
is defined to be the solution that lies in the quadrants identified in the %
figure at right. For example: ¢

. . . . tan” 0

The solutions to the equation # = sin~ ' 0.5 are all x-values in the

intervals {(g + Znn) U (5?” + Znn)}. That is, the set of all

Green values indicate positive values of the
original function (i.e., sin 6 = 0.5).

solutions to this equation contains the two solutions in the interval

Red values indicate negative values of the

[0, 2m), as well as all angles that are integer multiples of 2 less eeigital faberion e 2l 67.13).

than or greater than those two angles. Given the confusion this can create, mathematicians have
defined a principal value for the solution to these kinds of equations.

The principal value of 6 for which 8 = sin~ ' 0.5 lies in Q1 because 0.5 is positive, and is 6 = g.

Ranges of Inverse Trigonometric

] Ranges of Inverse Trigonometric Functions
Functions

Function Range

The ranges of inverse trigonometric functions

. I8 s
are generally defined to be the ranges of the sin~1@ -5 <9< 5
principal values of those functions. A table

summarizing these is provided at right. cos™ 16 0<O6<m

Angles in Q4 are expressed as negative angles. tan~1 0 o <p < T
2 T2
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Chapter 3 Inverse Trigonometric Functions

Graphs of Inverse Trigonometric Functions

Principal values are shown in green.
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Chapter 3 Inverse Trigonometric Functions

Problems Involving Inverse Trigonometric Functions

It is tempting to believe, for example, that sin"!(sinx) = x or

1 ) ] Locations of Principal Values
tan~*(tan x) = x. The two functions are, after all inverses. However, of Inverse Trig Functions
this is not always the case because the inverse function value desired y
is typically its principal value, which the student will recall is defined sin* 0

. . . -1 i
only in certain quadrants (see the table at right). cos” 0 ‘:05_19
tan” 0
Let’s look at a couple of problems to see how they are solved. X
sin’ @
.. _ 3w -2
Example 3.1: Calculate the principal value of tan™?! (tan?). tan” 0
Begin by noticing that tan™! and tan are inverse functions, so the e T
31T original function (i.e., sin 8 = 0.5).
solution to this problem is related to the angle given: = This Rl valties odicats pegative valuss oL e
original function (i.e., sin 8 = - 0.5).

angle is in Q2, but the inverse tangent function is defined only in

. T T
Q1 and Q4, on the interval [— oy E]

3n \5

We seek the angle in Q1 or Q4 that has the same tangent value as R

Since the tangent function has period r, we can calculate:

3T 21T

tan™! (tang?”) =0 "T="7% (in Q4) as our solution.

Example 3.2: Calculate the principal value of sin™?! (cos %n)

. . . 5m . . w7
We are looking for the angle whose sine value is cos—- in the interval [— oy E]'

Method 1: sin~! (cos %n) = sin™! (_ E)

A . . H :
) = — sincesine values are negative in Q4.

Method 2: Recall: sin (6 + g) = cos 0. Then, cos%ﬂ = sin (%ﬂ + g) =sin %n.

N 5w
Then, sin™* (cos T)

. b4 51 . 5 bis . 7T
= ( —) because cos— = sin (— + —) =sin—
4 4 2 4

4
. s 7T s s T T
= ( —) because — = —— and —— isin the interval [——,—].
4 4 4 4 2°2
Vs . . " . . .
== because inverse functions work nicely in quadrants in which the

principal values of the inverse functions are defined.

Version 2.2 Page 35 of 109 June 12, 2018



Chapter 3 Inverse Trigonometric Functions

Problems Involving Inverse Trigonometric Functions

When the inverse trigonometric function is the inner function in a composition of functions, it will
usually be necessary to draw a triangle to solve the problem. In these cases, draw the triangle
defined by the inner (inverse trig) function. Then derive the value of the outer (trig) function.

Example 3.3: Calculate the value of cot (sin‘1 [56—\/?_1])

: . 5v61 . .
Recall that the argument of the sin™! function, o1 = 3;/ Draw the triangle based on this.

Next, calculate the value of the triangle’s horizontal leg:

4 2
T X = \/612 — (5V61)" = 6V61.
I 61
T 5761 Based on the diagram, then,
1”::9111::111II1 t __15V61 X 6\/61 6
T 2 14 % cot|sin"' |[——||=—=—====
Wl 661 61 y 5V61 5
Example 3.4: Calculate the value of tan (cos‘1 ‘/2—5)
1 V2 x . .
Recall that the argument of the cos™" function, - = - Draw the triangle based on this.
Next, calculate the value of the triangle’s vertical leg:
T 2
y= (22— (V2) = 2.
T2 —
,\.;'2 Based on the diagram, then,
6. 1, | t -1 V2 y V2 1
o 2 an|cos  |—||===—==
'\-‘"2 2 X \/i
V2
Example 3.5: Calculate an algebraic expression for sin (sec‘1 [xTH )
Vx?19
Recall that the argument of the sec™?! function, xx = % Draw the triangle based on this.
Next, calculate the value of the triangle’s vertical leg:
2
yz\/(\/x2+9) —x%2=3
Based on the diagram, then,
X _ L [Vx2+9 y 3 3Vx2+9
sin|sec™ [———| | === =
X r Vx249 x2+9
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Key Angle Formulas

Key Angle Formulas

Angle Addition Formulas

sin (¢ + ) =sinacosf + cosasinf
sin (¢ — B) =sinacosfB — cosasinf

tana + tanf

tan (a + =
( A) 1—-tana tanp

Double Angle Formulas

sin 20 = 2sinf cos@

2 tan@

tan 20 = ———
an 1 —tanZ26

Half Angle Formulas

. 0 1—cos@
sin —= + /—
2 2

7] 1+ cos@
COS E

I
-+

6
tan —
2

sin @
1+ cos @

Version 2.2

cos (¢ + f) = cosacosf — sinasinf
cos (@ — ) = cosacosf + sinasinf

tana —tanf
1+tana tanpf

tan (a — B) =

cos 20 = cos?6 —sin? 6
= 1—2sin%8
= 2cos?60—1

The use of a “+” or “-“ sign in the half angle

formulas depends on the quadrant in which

0
the angle E resides. See chart below.

Signs of Trig Functions
By Quadrant
. A .
sin + ﬂ sin +
COS - CcoSs +
tan - tan +
< » X
sin - sin -
COS - CcoSs +
tan + tan -
v
y
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Chapter 4 Key Angle Formulas

Key Angle Formulas — Examples

Example 4.1: Find the exact value of: cos(175°) cos(55°) + sin(175°) sin(55°).
Recall: cos (@ — ) = cosacosf + sinasinf

cos(175%) cos(55°) + sin(175°) sin(55°) = cos(175° — 55°)
= cos(120°)
= —cos(60°) Converting to an angle in Q1

2

tana—tanf

Example 4.2: Find the exact value of: tan 255° Recall: tan(a — f) =
1+ tana-tanp

tan 255° = tan(315° — 60°)

tan 315° — tan 60°

= Angles in Q4 and Q1
1+ tan315°- tan 60° g Q Q

—tan 45° — tan 60°

= Converting to Q1 angles
1+ (—tan45°) - tan 60° & &

-1-vV3  -(1++3)
14+(-1)-vV3  1-+3

_ —(1++3)  1+v3 _ —(4+2V3) _
T 1-43 1+3 -2 =2+v3

Example 4.3: Find the exact value of: sin(105°). Recall: sin (¢ + f) = sinacosf + sinf cosa

sin(105°) = sin(60° + 45°) Note: both angles are in Q1, which makes things easier.
= (sin 60° - cos45°) + (sin45° - cos 60°)

_(B .2 L (2.1
—<7 7)+<7 2)

VZ- (V3 +1) V6 +2
=% o T
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Chapter 4 Key Angle Formulas

24 2
Example 4.4: sina = 25 @ lies in quadrant II, and cos § = P B lies in quadrant I. Find cos(a — f8).

Construct triangles for the two angles, being careful to consider the signs of the values in each
quadrant:

Then, cos(a — ) = cos(a) cos(f) + sin(a) sin(f)

B (—7 2) +(24 \/21) _ —14 24421
~ \25 5 25 5 /) 125

Example 4.5: Given the diagram at right, find: tan 26

25
2tané@ 7
tan 20 = —1 ~tanZ 0 0
24
_ 29 _ 13 _7 .576_336
1_<%)2 % 12 527 527

Example 4.6: tanf = %5, and @ lies in quadrant IIl. Find sin 26, cos 26, tan 26.

Draw the triangle below, then apply the appropriate formulas.

8T i1 20 = 2 sing 9_2< 15)( 8)_240
- o . sin = 2sinfcosf = 17 77) = 389
82 15> 161
B fd| oo - (3 - im
17 cos 260 = cos“ 60 —sin“ 0 17 17 289
] a0 = Sn20 240
] an " cos20 161
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Chapter 4 Key Angle Formulas

. 5 0 1+ cosf
Example 4.7: Find the exact value of: cos£ Recall: cos— = T ’ -

5T . 5t . -
Note that I isin Q1, so the value of cos— is positive.

12
5
cos 2T = cos i
12 2

1+ COSS?TT
= — Using the half-angle formula above
1— COS%
= Y Converting to an angle in Q1
- 2—-vV3 _J2—-43
o 4 2

0 1- 0
Example 4.8: cscO = —4, 0 liesin quadrant [V. Find sing. Recall: sin; = + /%

0 . 6. .
Note that if 8 is in Q4, then > isin Q2, so the value of sin= is positive.

2
. . 1
sinf = so, sinf = —-
csch 4
. f 2 15 o e
cosf =vV1—sin?6 = |1 — (— %) = g Note: cosine is positive in Q4
. 1—cosf .
sing = 3 Using the half-angle formula above
V15 4-415
TR b 2
n 2 2

_ [4-Vi5 g_\/s—zx/ﬁ_\/8—2\/1_5
— N s 2 16 4
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Key Angle Formulas

Power Reducing Formulas

5 1 — cos 26 5
sin“ @ = cos“ 0 =
2
5 1 — cos 26
tanc0 = ——
1+ cos 26

Product-to-Sum Formulas

sina-sinf = = [cos(a—B) — cos(a+ )]
cosa-cosf = = [cos(a—B) + cos(a+p)]
sina-cosf =

[ sin(a + B) + sin(a —p) ]

cosa-sinff =

Nl= NR=R = N

[ sin(ax + B) — sin(a—B) |

Sum-to-Product Formulas

a
sina + sinf = 2-sin<

sina — Si“3=2'sin<“;ﬂ>-cos(“+ﬁ)

a
cosa+ cosf = 2-cos<

cosa — cosf = —Z'Sin(a;ﬁ)-sin<a;ﬂ>
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Key Angle Formulas — Examples

Example 4.9: Convert to a sum formula: sin 8x - cos5x

Use: sina-cosf = % [ sin(a + B) + sin(a— ) |

[ sin(8x + 5x) + sin(8x — 5x) |

sin8x * cos5x =

N | =

[sin(13x) + sin(3x) ]

N | =

7x X
Example 4.10: Convert to a sum formula: COs— - COS -

Use: cosa-cosf = % [ cos(a— B) + cos(a+ B) ]
7x X 1 7x x 7x X
COS— * COST = = [cos(——g) + cos(7+5)]
=% [cos(3x) + cos(4x) |

Example 4.11: Convert to a product formula: sin 8x + sin 2x

Use: sina + sinf = 2 - sin (%ﬂ) . COS (“2;3)

. . . 8x+2x 8x—2x
sin8x + sin2x = 2-sm( 5 )-cos( 5 )

= 2 -sin(5x) - cos(3x)

Example 4.12: Convert to a product formula: cos8x — cos 2x

Use: cosa — cosff = —2-sin (azﬁ) - sin (azi)

. 8x+2x . 8x—2x
cos8x — cos2x = —2-sm( 5 )-sm( 5 )

= —2 - sin(5x) - sin(3x)
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Chapter 5 Identities and Equations

Verifying Identities

A significant portion of any trigonometry course deals with verifying Trigonometric Identities, i.e.,
statements that are always true (assuming the trigonometric values involved exist). This section
deals with how the student may approach verification of identities such as:

(1+tan?8)-(1—sin?0) =1

In verifying a Trigonometric Identity, the student is asked to work with only one side of the identity
and, using the standard rules of mathematical manipulation, derive the other side. The student may
work with either side of the identity, so generally it is best to work on the side that is most complex.
The steps below present a strategy that may be useful in verifying identities.

Verification Steps

1. Identify which side you want to work on. Let’s call this Side A. Let’s call the side you are not
working on Side B. So, you will be working on Side A to make it look like Side B.

a. If one side has a multiple of an angle (e.g., tan 3x) and the other side does not (e.g.,
cos x), work with the side that has the multiple of an angle.

b. If one side has only sines and cosines and the other does not, work with the side that
does not have only sines and cosines.

c. If you get part way through the exercise and realize you should have started with the
other side, start over and work with the other side.

2. If necessary, investigate Side B by working on it a little. This is not a violation of the rules as
long as, in your verification, you completely manipulate Side A to look like Side B. If you
choose to investigate Side B, move your work off a little to the side so it is clear you are
“investigating” and not actually “working” side B.

3. Simplify Side A as much as possible, but remember to look at the other side to make sure you
are moving in that direction. Do this also at each step along the way, as long as it makes Side
A look more like Side B.
a. Use the Pythagorean Identities to simplify, e.g., if one side contains (1 — sin? x) and
the other side contains cosines but not sines, replace (1 — sin? x) with cos? x.
b. Change any multiples of angles, half angles, etc. to expressions with single angles (e.g.,
replace sin2x with 2 sinx cosx).
c. Look for 1’s. Often changinga 1 into sin® 6 + cos” @ (or vice versa) will be helpful.

4, Rewrite Side A in terms of sines and cosines.
5. Factor where possible.

6. Separate or combine fractions to make Side A look more like Side B.

The following pages illustrate a number of techniques that can be used to verify identities.
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Chapter 5 Identities and Equations

Verifying Identities — Techniques

Technique: Investigate One or Both Sides

Often, when looking at an identity, it is not immediately obvious how to proceed. In many cases,
investigating both sides will provide the necessary hints to proceed.

Example 5.1:
11
sinx cosx _ cotx — 1
1 v 1 cotx + 1
sin x COS X

Yuk! This identity looks difficult to deal with — there are lots of fractions. Let’s investigate it by

converting the right side to sines and cosines. Note that on the right, we move the new fraction

off to the side to indicate we are investigating only. We do this because we must verify an

identity by working on only one side until we get the other side.

1 1 COS X COS X
sinx  cosx _cotx — 1 _  sinx COS X
1 1 T cotx + 1 ~ T cosx COS X
sin x T Ccos x sin x CoS X

In manipulating the right side, we changed each 1 in the green expression to -

COSsXx

because we

want something that looks more like the expression on the left.

Notice that the orange expression looks a lot like the expression on the left, except that every

place we have a 1 in the expression on the left we have cos x in the orange expression.

What is our next step? We need to change all the 1’s in the expression on the left to cos x. We

CcoS X
can do this by multiplying the expression on the left by , as follows:
cosXx
1 1
CoS x sinx  cosx
Ccos X 1 1
sin x cos x
COosXx CosXx
sin x CcCos Xx . . .
COS ¥ —CoS X Notice that this matches the orange expression above.
sinx cosx
cotx — 1 cotx — 1
cotx + 1 cotx + 1
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Verifying Identities — Techniques (cont’d)

Technique: Break a Fraction into Pieces

When a fraction contains multiple terms in the numerator, it is sometimes useful to break it into
separate terms. This works especially well when the resulting numerator has the same number of
terms as exist on the other side of the equal sign.

Example 5.2:

cos(a — )

=1—tanatan
cosacosf p

First, it’s a good idea to replace cos(a — ) with cosa cos S — sina sin f3:

cosacosf —sinasinf

cosacosfB
Next, break the fraction into two pieces:

cosacosf sina sin 8

cosacosffS  cosacosf

Finally, simplify the expression:

- (e ()

1 —tanatanf =1—tanatanf
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Chapter 5 Identities and Equations

Verifying Identities — Techniques (cont’d)

Technique: Get a Common Denominator on One Side

If it looks like you would benefit from getting a common denominator for the two sides of an identity,
try converting one side so that it has that denominator. In many cases, this will result in an
expression that will simplify into a more useful form.

Example 5.3:

CcoS X 1+ sinx

1 —sinx CcoS x

If we were to solve this like an equation, we might create a common denominator. Remember,
however, that we can only work on one side, so we will obtain the common denominator on only
one side. In this example, the common denominator would be: cos x (1 — sin x).

COS X COS X

cosx 1-—sinx

cos? x

cosx (1 —sinx)

Once we have manipulated one side of the identity to have the common denominator, the rest of
the expression should simplify. To keep the cos x in the denominator of the expression on the
left, we need to work with the numerator. A common substitution is to convert between sin? x
and cos? x using the Pythagorean identity sin®x + cos?x = 1.

1 —sin?x

cosx (1 —sinx)
Notice that the numerator is a difference of squares. Let’s factor it.

(1 +sinx)(1 —sinx)
cosx (1 —sinx)

Finally, we simplify by eliminating the common factor in the numerator and denominator.

1+ sinx 1+ sinx

COS X COS x
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Solving Trigonometric Equations

Solving trigonometric equations involves many of the same skills as solving equations in general.
Some specific things to watch for in solving trigonometric equations are the following:

e Arrangement. Itis often a good idea to get arrange the equation so that all terms are on one
side of the equal sign, and zero is on the other. For example, tan? x sin x = tan? x can be
rearranged to become tan? x sinx — tan?x = 0.

e (Quadratics. Look for quadratic equations. Any time an equation contains a single Trig
function with multiple exponents, there may be a way to factor it like a quadratic equation.
For example, cos?x + 2 cosx + 1 = (cosx + 1)2.

e Factoring. Look for ways to factor the equation and solve the individual terms separately. For
example, tan? x sinx — tan® x = tan® x (sinx — 1).

e Terms with No Solution. After factoring, some terms will have no solution and can be
discarded. For example, sinx — 2 = 0 requires sinx = 2, which has no solution since the
sine function never takes on a value of 2.

e Replacement. Having terms with different Trig functions in the same equation is not a
problem if you are able to factor the equation so that the different Trig functions are in
different factors. When this is not possible, look for ways to replace one or more Trig
functions with others that are also in the equation. The Pythagorean ldentities are
particularly useful for this purpose. For example, in the equation cos?x —sinx — 1 = 0,
cos? x can be replaced by 1 — sin? x, resulting in an equation containing only one Trig
function.

e Extraneous Solutions. Check each solution to make sure it works in the original equation. A
solution of one factor of an equation may fail as a solution overall because the original
function does not exist at that value. See Example 5.6 below.

¢ Infinite Number of Solutions. Trigonometric equations often have an infinite number of
solutions because of their periodic nature. In such cases, we append “+2nm” or another term
to the solutions to indicate this. See Example 5.9 below.

e Solutions in an Interval. Be careful when solutions are sought in a specific interval. For the
interval [0, 2m), there are typically two solutions for each factor containing a Trig function as
long as the variable in the function has lead coefficient of 1 (e.g., x or 8). If the lead
coefficient is other than 1 (e.g., 5x or 50), the number of solutions will typically be two
multiplied by the lead coefficient (e.g., 10 solutions in the interval [0, 27) for a term involving
5x). See Example 5.5 below, which has 8 solutions on the interval [0, 2).

A number of these techniques are illustrated in the examples that follow.
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Chapter 5 Identities and Equations

Solving Trigonometric Equations — Examples

Example 5.4: Solve for x on the interval [0, 27r): cos?x + 2cosx+ 1 =0

Example 5.5: Solve for x on the interval [0, 2m): sin4x = >y

The trick on this problem is to recognize the expression as a quadratic equation. Replace the
trigonometric function, in this case, cos x, with a variable, like u, that will make it easier to see
how to factor the expression. If you can see how to factor the expression without the trick, by all
means proceed without it.

Let u = cos x, and our equation becomes: u?+2u+1=0.

This equation factors to get: u+1?=0

Substituting cos x back in for u gives: (cosx+1)2=0

And finally: cosx+1=0 = cosx=-1

The only solution for this on the interval [0,2m)is: x=m

V3

When working with a problem in the interval [0, 277) that involves a function of kx;, it is useful to
expand the interval to [0, 2km) for the first steps of the solution.

. . . 3 . .
In this problem, k = 4, so we want all solutions to sinu = g where u = 4x isananglein the

interval [0, 87). Note that, beyond the two solutions suggested by the diagram, additional
solutions are obtained by adding multiples of 2 to those two solutions.

.- Using the diagram at left, we get the following solutions:
3 m 2n 7n 8w 13w 14m 197 207w
WER=3 g3 3 3 3
Then, dividing by 4, we get:
n 2n 7m 8m 13w 14m 19w 207w
YT 1201271212712 12 112 12
And simplifying, we get:
n n 7 2w 13w 7w 191w 5w

solutions (i.e., 2) is increased X=—C, >0, e e e
12’612 3 " 12 6 12 3
by a factor of k = 4.

w3

Note that there are 8 solutions
because the usual number of
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Solving Trigonometric Equations — Examples

Example 5.6: Solve for x on the interval [0, 27): tan? x sin x = tan® x

tan®xsinx — tan?x =0

tan?x (sinx —1) =0

L T—

tanx =0 or (sinx—1)=0 While x = % is a solution to the equation

. . . Vs
x=0T1 sinx =1 sinx = 1, tanx is undefined at x = >

x== / o) g is not a solution to this equation.
2

x=0m

Example 5.7: Solve for x on the interval [0, 21): cosx + 2cosx sinx =0

cosx (14 2sinx) =0

cosx =0 or (1+2sinx) =0 w
T 3T . 1 r\
X == sinx = —=
2 : \ \\ g
B G
Y= 7_11" 117 - _/ e

6 - 11m
6

7m 3n 11w

_T[
=262 6

Example 5.8: Solve for x on the interval [0, 2m): cos (x + g) + cos (x - g) =1

Use: cos (¢ + B) = cosacosfB — sinasinf cos (@ — ) = cosacosf + sinasinf

cos(x+%)+cos(x—%)=1

T . . T T . . T
COSXCOSg - SlIlXSln§ + COSXCOS§ + Sll’lXSII’lg =1

T
2cosxcos§= 1

2 1—1
cosxz—
cosx =1 = x=0
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Solving Trigonometric Equations — Examples

Example 5.9: Solve for all solutions of x: 2sinx — V3 = 0

2sinx = /3 . The drawing at left illustrates the two
N 3 angles in [0, 2m) for which sinx = ? To
3
sinx = - get all solutions, we need to add all
™ integer multiples of 2m to these solutions.
3
So,
X € {§+ 2n1r} U {2?”+ Znn}
Example 5.10: Solve for all solutions of x: tanxsecx = —2tanx .
3
tanxsecx + 2tanx = 0 (secx+2)=0
4
tanx (secx +2) =0 secx = —2 3
tanx =0 or (secx+2)=0 cosx=—%
x=0+nr=nn x=2§+2nn or x=4?”+2mr

Collecting the various solutions, x € {nm} U {%ﬂ + 2n7‘t} U {4?"+ Znn}

Note: the solution involving the tangent function has two answers in the interval [0, 27).
However, they are m radians apart, as most solutions involving the tangent function are.
Therefore, we can simplify the answers by showing only one base answer and adding nr, instead
of showing two base answers that are m apart, and adding 2nm to each.

For example, the following two solutions for tanx = 0 are telescoped into the single solution
given above:

x=0+2nmw ={...,—4m, —2m,0,2m, 4m, ...}
x=0+nr={..,—-2mn,—-m0,mr2m,..}
x=m+2nw ={...,—3m,—m,m,3m,51..}
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Solving an Oblique Triangle

Several methods exist to solve an oblique triangle, i.e., a triangle with no right angle. The appropriate
method depends on the information available for the triangle. All methods require that the length of
at least one side be provided. In addition, one or two angle measures may be provided. Note that if
two angle measures are provided, the measure of the third is determined (because the sum of all
three angle measures must be 180°). The methods used for each situation are summarized below.

Given Three Sides and no Angles (SSS)
Given three segment lengths and no angle measures, do the following:

e Use the Law of Cosines to determine the measure of one angle.

e Use the Law of Sines to determine the measure of one of the two remaining angles.

e Subtract the sum of the measures of the two known angles from 180° to obtain the measure
of the remaining angle.

Given Two Sides and the Angle between Them (SAS)
Given two segment lengths and the measure of the angle that is between them, do the following:

e Use the Law of Cosines to determine the length of the remaining leg.

e Use the Law of Sines to determine the measure of one of the two remaining angles.

e Subtract the sum of the measures of the two known angles from 180° to obtain the measure
of the remaining angle.

Given One Side and Two Angles (ASA or AAS)
Given one segment length and the measures of two angles, do the following:

e Subtract the sum of the measures of the two known angles from 180° to obtain the measure
of the remaining angle.
e Use the Law of Sines to determine the lengths of the two remaining legs.

Given Two Sides and an Angle not between Them (SSA)

This is the Ambiguous Case. Several possibilities exist, depending on the lengths of the sides and the
measure of the angle. The possibilities are discussed on the next several pages.
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Chapter 6 Solving an Oblique Triangle

Laws of Sines and Cosines

The triangle above can be oriented in any manner. It does not matter which angleis A, B or C.
However,

e Side a is always opposite (across from) £A.

e Side b is always opposite (across from) 2B.

e Side cis always opposite (across from) 2C.

Law of Sines (see above illustration)

a b c

sin A sin B sin C

Law of Cosines (see above illustration)

a’? = b%> 4+ ¢? — 2bc cosA
b?> = a? 4+ ¢? — 2ac cosB
c? = a? + b? — 2ab cosC

The law of cosines can be described in words as follow: The square of any side is the sum of
the squares of the other two sides minus twice the product of those two sides and the cosine
of the angle between them.

It looks a lot like the Pythagorean Theorem, with the minus term appended.
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Laws of Sines and Cosines — Examples

Example 6.1: Solve the triangle, given: A = 38°, B = 32°, a =42.1. B
To solve: find the third angle, and then use the Law of Sines. 3z
msC = 180° — 38° —32° = 110° a=42.1
Then use the Law of Sines to find the lengths of the two 38°
remaining sides. A c
42.1 b b 42.1-sin32° 16.2
= =3 == .
sin38° sin32° sin 38°
42.1 c 42.1-sin110° 43
= = = = .
sin38°  sin110° ¢ sin 38°

Example 6.2: Solve the triangle, given: a =6, ¢ = 12, B = 124°.

First, draw the triangle from the information you are given. This will help you get an idea of
whether the values you calculate in this problem are reasonable.

Next, find the length of the 3" side of the triangle using the C
Law of Cosines: b%? = a? + c? — 2ac cosB %_6
124°
b%? = 62 + 122 — 2(6)(12)(cos 124°) = 236.52378 A b=12 B

b =+v236.52378 = 16.14075 ~ 16.1
Use the Law of Sines to find the measure of one of the remaining angles.

a b 6 16.14075

snA _snB  snA_ sinizee - SinA=03082

msA = sin"10.3082 = 18°

The measure of the remaining angle can be calculated either from the Law of Sines or from
knowledge that the sum of the three angles inside a triangle is 180°.

mesC = 180° — 124° — 18° = 38°

Version 2.2 Page 53 of 109 June 12, 2018



Chapter 6 Solving an Oblique Triangle

The Ambiguous Case (SSA)

Given two segment lengths and an angle that is not between them, it is not clear whether a triangle is
defined. It is possible that the given information will define a single triangle, two triangles, or even no
triangle. Because there are multiple possibilities in this situation, it is called the ambiguous case.

Here are the possibilities:

Case 1 Case 2
b a b a
A s A [ s
Case 3 Case 4
b a \a b a
A —> A —

There are three cases in which a < b.
Case 1: a < bsinA Produces no triangle because a is not long enough to reach the base.

Case 2: a = bsin A Produces one (right) triangle because a is exactly long enough to reach the
base. a forms a right angle with the base, and is the height of the triangle.

Case 3: a > bsin A Produces two triangles because a is the right size to reach the base in two
places. The angle from which a swings from its apex to meet the base can take two values.

There is one case in which a > b.

Cased: a>b Produces one triangle because a is too long to reach the base in more than one
location.

Version 2.2 Page 54 of 109 June 12, 2018



Chapter 6 Solving an Oblique Triangle

The Ambiguous Case (SSA)

Solving the Ambiguous Case

How do you solve a triangle (or two) in the ambiguous case? Assume the information given is the

lengths of sides a and b, and the measure of Angle A. Use the following steps:

Step 1:
Step 2:

Step 3:

Calculate the height of the triangle (in this development, h = b sin A).
Compare a to the height of the triangle, h:

If a < h, then we have Case 1 —there is no triangle. Stop here.

Case 1 .
Key values on a number line.

a

Z | |
a s I |
b

N

A —>

If a = h, then B = 90°, and we have Case 2 — a right triangle. Proceed to Step 4.

Case 2
Key values on a number line.
a
Z | |
- | |
A [ N b

¥

If a > h, then we have Case 3 or Case 4. Proceed to the Step 3 to determine which.
Compare a to b.

If a < b, then we have Case 3 —two triangles. Calculate sin B using the Law of Sines. Find
the two angles in the interval (0°, 180°) with this sine value; each of these 2B’s produces a
separate triangle. Proceed to Step 4 and calculate the remaining values for each.

Case 3
Key values on a number line.

a
Z | | LN
a \a < 1 | 7

b

A —>

If a = b, then we have Case 4 — one triangle. Find m«B using the Law of Sines. Proceed to
Step 4.

Case 4 .
Key values on a number line.

a
b a ¢ I I >
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Chapter 6 Solving an Oblique Triangle

The Ambiguous Case (SSA)

Solving the Ambiguous Case — cont’d

Step 4: Calculate C. At this point, we have the lengths of sides a and b, and the measures of Angles A
and B. If we are dealing with Case 3 — two triangles, we must perform Steps 4 and 5 for each triangle.

Step 4 is to calculate the measure of Angle C as follows: msC = 180° —msA — m«sB

Step 5: Calculate c. Finally, we calculate the value of c using the Law of Sines.

a c asinC b c bsinC
- = — = - or - = — = = —
sin4 sinC sin A sinB sinC sin B

Note: using a and £A may produce more accurate results since both of these values are given.

Ambiguous Case Flowchart

Start Here

Case 4

Compare a to
h=bsinA

Compare
atob

Case 2 Case 3

Two triangles

Calculate C, and then ¢
(steps 4 and 5, above).
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Chapter 6 Solving an Oblique Triangle

Ambiguous Case — Examples

Example 6.3: Determine whether the following measurements produce one triangle, two triangles,
or no triangle: m«C = 35°, a = 18.7, ¢ = 16.1. Solve any triangles that result.

Since we are given two sides and an angle that is not between them, this is the ambiguous case.
We draw this situation with 2C on the left and ¢ hanging down, as shown below.

Step 1: Calculate h =asinC. h = 18.7-sin35°=10.725
Step 2: Compare c to h. c=16.1 > h=10.725.

Step 3: Compare c to a. c =16.1 < a =18.7, sowe have Case 3 —two triangles.
. :
a h=asinC %
C v

Calculate sin A using the Law of Sines:

a c 18.7 16.1
= f—
sin4 sin35°

= sin4 = 0.6662

sind _ sinC
Two angles in the interval (0°, 180°) have this sine value. Let’s find them:
msA =sin"10.6662 = 42° or mzA = 180°—42°=138°

Since we will have two triangles, we must solve each.

Triangle 1 — Start with: Triangle 2 — Start with:
a=18.7, c=16.1 a=187, c=16.1
msC = 35°, mzsA = 42° msC = 35°, mzszA = 138°
Step 4: Step 4:
msB = 180° — 35° — 42° = 103° msB = 180° — 35° — 138° = 7°
Step 5: Step 5:
b c b 16.1 b c b 16.1
= = = =3 =
sinB sinC - sin103° sin 35° sinB sinC sin7° sin 35°
b=274 b=34
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Ambiguous Case — Examples

Example 6.4: Determine whether the following measurements produce one triangle, two triangles,
or no triangle: m«B = 88°, b = 2, a = 23. Solve any triangles that result.

Since we are given two sides and an angle that is not between them, this is the ambiguous case.

We draw this situation with 2B on the left and b hanging down, as shown below.
Step 1: Calculate h =asinB. h = 23-sin88° = 22.986

Step 2: Compare b to h. b=2 < h=22.986.

: b :
b
a h=asinB % a h=asinB
B v > B vy

Stop. We have Case 1 —no triangle.

Alternative Method

Calculate the measure of angle A using the Law of Sines:

a b 23 2

= = = = in4d =11.493
sin4 sinB sin4A sin88° o

mzA = sin~111.493

11.493 is not a valid sine value (recall that sine values range from —1 to 1). Therefore, the given
values do not define a triangle.

Note: The Alternative Method for dealing with the ambiguous case is laid out in detail in
Appendix B.
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Chapter 6 Solving an Oblique Triangle

Bearings

Bearings are described differently from other angles in Trigonometry. A bearing is a clockwise or
counterclockwise angle whose initial side is either due north or due south. The student will need to
translate these into reference angles and/or polar angles to solve problems involving bearings.

Some bearings, along with the key associated angles are shown in the illustrations below. The bearing
angle is shown as f3, the reference angle is shown as 0, and the polar angle is shown as @.

B =50° p=30°

— i? %\'q)
0 0\
\

Bearing: N 50°W Bearing: N 30°E
Bearing Angle: 3 = 50° Bearing Angle: 3 = 30°

Reference Angle: 6 = 40° Reference Angle: 6 = 60°

Polar Angle: ¢ = 140° Polar Angle: ¢ = 60°

i e AN

\
;/ »1 [y

——

B = 60° B=70°
Bearing: S60°W Bearing: S 70° E
Bearing Angle: 3 = 60° Bearing Angle: = 70°
Reference Angle: 6 = 30° Reference Angle: 8 = 20°
Polar Angle: ¢ = 210° Polar Angle: ¢ = 340°
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Chapter 6 Solving an Oblique Triangle

Bearings — Examples

Example 6.5: Two tracking stations are on the equator 127 miles apart. A weather balloon is located
on a bearing of N 36° E from the western station and on a bearing of N 13° W from the eastern
station. How far is the balloon from the western station?

The bearing angles given are those shown in orange in the

diagram at right. The first step is to calculate the reference

angles shown in magenta in the diagram.
900 —36° = 540 Balloon
90° —13°=77°

0 = 180° — 54° — 77° = 49°

Then, use the Law of Sines, as follows: g i
West 127 miles East

Station Station
127 b

= = = . i
sin49°  sin77° x = 1640 miles

Example 6.6: Two sailboats leave a harbor in the Bahamas at the same time. The first sails at 25 mph
in a direction S 50° E. The second sails at 30 mph in a direction S 70° W. Assuming that both boats
maintain speed and heading, after 4 hours, how far apart are the boats?

Let’s draw a diagram to illustrate this situation. The lengths of two sides of a triangle are based
on the distances the boats travel in four hours. The bearing angles given are used to calculate
the reference shown in orange in the diagram below.

Boat 1 travels: 25 mph -4 hours = 100 miles at a

Harbor

heading of S 50° E. This gives a reference angle of 20° 40°

120 mi
90° — 50° = 40° below the positive x-axis. e o

Boat 2

Boat 2 travels: 30 mph -4 hours = 120 mi. at a
heading of S 70°W. This gives a reference angle of

Boat 1

90° — 70° = 20° below the negative x-axis.

Using the Law of Cosines, we can calculate:

x2 = 1002 + 1202 — 2(100)(120)(cos 120°) = 36,400 =  x = 190.8 miles
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Chapter 7 Area of a Triangle

Area of a Triangle

Area of a Triangle

There are a number of formulas for the area of a triangle, depending on what information
about the triangle is available.

Geometry Formula: This formula, learned in Elementary Geometry, is probably most familiar
to the student. It can be used when the base and height of a triangle are either known or can
be determined.

A—lbh
2

where, b isthe length of the base of the triangle.
h is the height of the triangle.

Note: The base can be any side of the triangle. The height is the length of the altitude of
whichever side is selected as the base. So, you can use:

or b or b
h h h
b

Heron’s Formula: Heron’s formula for the area of a triangle can be used when the lengths of

all of the sides are known. Sometimes this formula, though less appealing, can be very useful.

A= s(s—a)(s—b)(s—c)

where, s:%P:%(a+b+c).

a, b, c are the lengths of the sides of the triangle.

Note: s is called the semi-perimeter of the triangle because it is half of the triangle’s perimeter.
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Area of a Triangle (cont’d)

Trigonometric Formulas

The following formulas for the area of a triangle can be derived from the Geometry formula,

A= %bh, using Trigonometry. Which one to use depends on the information available:

Two angles and one side:

1 a?-sinB -sinC 1 b? -sinA-sinC 1 c?-sinA-sinB

2 sin A4 2 sin B 2 sin C
Two sides and the angle between them:

) 1 ) 1 )
A = Eab sinC = Eac sinB = Ebc sin 4

Coordinate Geometry Formula
If the three vertices of a triangle are displayed in a coordinate plane, the formula below, using a
determinant, will give the area of a triangle.

Let vertices of a triangle in the coordinate plane be: (xq,v1), (x3,v2), (x3,v3). Then, the
area of the triangle is:

1 x1 y1 1
A= 7 X, y2 1
x3 y3 1
Example 7.1: For the triangle in the figure at right, the area is:
(2.4)
1 2 4 1
A= 3 21
3 -1 1
(-3.2)
1 2 1 -3 1 -3 2
- E'|2|_1 1|_4| 3 1|+1| 3 —1||
1 1 27 Gl
= §'|(2(3)—4(—6)+1(—3))|= 5 27=—
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Area of a Triangle — Examples

Example 7.2: Find the area of the triangle if: C=120°, a =4 yards, b =5 yards. B

1
Area = 5 absin C

:%.4.5.Sir11200:10-@:8.66yards2

Area of a Triangle

b

Example 7.3: Find the area of the triangle if: a = 10vyards, b = 11 yards, ¢ = 15 yards.

To solve this problem, we will use Heron’s formula:

Area = \/s(s — a)(s — b)(s — ¢) s=%(a+b+c)

First calculate: s = %(10 +11+15) =18

Then, Area = \/s(s —a)(s—=b)(s—rc)

=/18(18 — 10)(18 — 11)(18 — 15)

=+/18-8-7-3 =12v/21 = 54.99 yards®

Example 7.4: Find the area of the triangle in the figure below using Coordinate Geometry:

NI " 11 1 (6.5)
A: E' xZ yz 1 = E' 7 1 1 41
X3 y3 1 6 5 1
1 11 7 1 7 1 j
_§'|1|5 1|_1|6 1|+1|6 5|| IRTEIEY) | @y
1 1
= S 1A - 1D +129) | = 524 = 12

Note: It is easy to see that this triangle has a base of length 6 and a height of 4, so from

Elementary Geometry, the area of the triangleis: A = %bh = % 64 = 12 (same answer).

The student may wish to test the other methods for calculating area that are presented in

this chapter to see if they produce the same result. (Hint: they do.)
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Chapter 8 Polar Coordinates

Polar Coordinates

Polar coordinates are an alternative method of describing a point in a Cartesian plane based on the
distance of the point from the origin and the polar angle whose terminal side contains the point.

Let’s take a look at the relationship between a point’s rectangular coordinates (x, y) and its polar
coordinates (1, 0).

The magnitude, r, is the distance of the point from the origin: r = ,/x? + y?

The angle, 6, is the polar angle whose terminal side contains the point. Generally, this angle is
expressed in radians, not degrees:

tanf = % so 6 =tan ! G), adjusted to be in the appropriate quadrant.

Conversion from polar coordinates to rectangular coordinates is straightforward:

x=rcosf and y=rsind

Example 8.1: Express the rectangular form (—4,4) in polar (4,4)
coordinates: :
Given: x =—4 y =4 T 3

r=4J§

r=x2+y?=[(-4)? + 42 = 42

0 =tan~?! (%) = tan~! (_%) = tan"1(—1) in QuadrantII,

-2

31T
so 0 =—
4

So, the coordinates of the point are as follows:

Rectangular coordinates: (—4,4) Polar Coordinates: (4\/7, %n)

Example 8.2: Express the polar form (4\/?, %n) in rectangular coordinates:

Given: 1 =42 0 = 3
3r V2

x =7cos =4v2-cos T = 4v2- (- 2) = —4
4 2

. . 3m NG3

y =rsinf =4\/§'51n—:4\/§-(_) = 4
4 2

So, the coordinates of the point are as follows:

Polar Coordinates: (4\/5, :%T) Rectangular coordinates: (—4,4)
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Polar Form of Complex Numbers

Expressing Complex Numbers in Polar Form

A complex number can be represented as point in the Cartesian Plane, using the horizontal axis for
the real component of the number and the vertical axis for the imaginary component of the number.

If we express a complex number in rectangular coordinates as z = a + bi, we can also express it in
polar coordinates as z = r(cos 8 + isin @), with 6 € [0, 2m). Then, the equivalences between the
two forms for z are:

Convert Rectangular to Polar Convert Polar to Rectangular
Magnitude: |z| = r = Va? + b? x-coordinate: a = r cos 6
_1 (b
Angle: 8 = tan™! (E) y-coordinate: b = rsin @

Since 6 will generally have two values on [0, 277), we need to be careful to select the angle in the
quadrant in which z = a + bi resides.

Operations on Complex Numbers in Polar Form

Around 1740, Leonhard Euler proved that: e’ = cos6 + i sin 6. As a result, we can express any
complex number as an exponential form of e. That is:
z=a+bi=7r(cosf +isinh) =r-e

Thinking of each complex number as being in the form z = r - ¢'?, the following rules regarding
operations on complex numbers can be easily derived based on the properties of exponents.

Let: zy = a; + byi =ry(cosB +isinf), z, =a, + byi =r,(cose +ising). Then,

Multiplication: Zy Zy =1 1y [cos (B + @) + isin(6 + ¢)]

So, to multiply complex numbers, you multiply their magnitudes and add their angles.
Division: Zy + Zy = % [cos (B8 — @) + isin(6 — ¢)]
2
So, to divide complex numbers, you divide their magnitudes and subtract their angles.

Powers: z;" = ry"(cosnf + i sinnbh)

This results directly from the multiplication rule.

6, .. 0 .
Roots: Nz =\n (cosa + isin ;) also, see “DeMoivre’s Theorem” below

This results directly from the power rule if the exponent is a fraction.
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Operations on Complex Numbers - Examples

Example 8.3: Find the product: z; - z,.

. 7T
Z; = \/§(cos— + isin ) <— shorthandis: z; = /3 cis (%n) =+3e' %

. 9T
Z, = \/g(cos + isin ) < shorthand is: z, = /6 cis (%") =6e'+
To multiply two numbers in polar form, multiply the r-values and add the angles.

7T 91
22, =V3-V6" as(4 4)

= 3v2 cis(4m) = 3vV2 cis 0 = 3v2 because cis 0 = 1.

Note: multiplication may be easier to understand in exponential form, since exponents are added
when values with the same base are multiplied:

. 7T . .
V3e's - VBt = V3B -el(FH) = 3vZeitm = 3vZi0 = 32

Example 8.4: Find the quotient: z; + z,.
. 7T
Z, = \/§(cos— + isin ) <———— shorthandis: z; = /3 cis (%”) =+3e' %

. 91T
Z; = \/g(cos— + isin ) <—— shorthandis: z, = \/_c1s( ) =6e'+

To divide two numbers in polar form, divide the r-values and subtract the angles.
V3 . (77‘[ 97r)

N cis 2 2

1 ( TT)_\/E ( T )_\/E_(37T>_ iv2
= cis = = cis = >

2 2

Note: division may be easier to understand in exponential form, since exponents are subtracted
when values with the same base are divided:
L 7T
3e' 1 ./7m 9r 2 m 2 m 2 .3m iv?2
Vet 1 G- S5 S YR o Fean) JV2 0 V2

\/gei-%” 2 2 2 2 2

21'22:

2

. (37 .
5 because cis (—) = —1.

2
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DeMoivre’s Theorem

Abraham de Moivre (1667-1754) was a French mathematician who developed a very useful Theorem
for dealing with operations on complex numbers.

If welet z = r(cos @ + isin @), DeMoivre’s Theorem gives us the power rule expressed on the prior
page:
z" = r"(cosnb + i sinnh)

6
Example 8.5: Find (=3 + iV/7) T
('31\‘7]

First, since z = a + bi, we have a = —3 and b = /7.

(i)

T 138.590°
Then, r:\/(—3)2+(\/7)2=4; r® = 4° = 4,096 | | | \

And, 6 = tan~! (— g) = 138.590° in Q2

60 = 831.542° ~ 111.542°
So,
(—3 + i\/7)6 = 4,096 cis(111.542°) = 4,096 - [cos(111.542°) + isin(111.542°)]
= —1,504.0 + 3,809.9i

5
Example 8.6: Find (—\/g - Zi)

221.810°
First, since z = a + bi, we have a = —V5 and b = —2. K\

Then, r = \/(—\/g)z + (=2)2=3; r>=3°=243

-/5,-2
And, 6 = tan™? (%) —221.810° in Q3 (-/5.-2)

560 = 1,109.052° ~ 29.052°

So,
5
(—\/g - Zi) = 243 cis(29.052°) = 243 - [c0s(29.052°) + isin(29.052°)]
= 212.4 + 118.0i
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DeMoivre’s Theorem for Roots

Let z = r(cos @ + isinf). Then, z has n distinct complex n-th roots that occupy positions
equidistant from each other on a circle of radius /. Let’s call the roots: z,, z;, Zy, ... , Z,_;. Then,
these roots can be calculated as follows (k = 0,1,2,... ,n—1):

2o = F - [ (9 + k(Zn)) ©isin <9 + IT{l(ZT[)>l _ 5 cis (9 + k(2n)>

n

The formula could also be restated with 27 replaced by 360° if this helps in the calculation.

Example 8.7: Find the fifth roots of 2 — 3i.
First, since z = a + bi,wehave a =2 and b = —3. 1 I
-56.310°
Then, r =22 + (=3)? = V13; ¥r = V13 ~ 1.2924
2,-3
And, 6 = tan~* (=) = —56.310° ¥ =-11.262° in Q4 SR A

The incremental angle for successive roots is: 360° + 5 roots = 72°.

Then create a chart like this:

Fifth roots of (2 — 3i)  3/r = 'Y/13 ~ 1.2924 gz ~11.262°
k Angle (6;) Zy= \r -cos@, + 3r -sin@-i
0 —11.262° Zo = 12675 — 0.2524i
1 —11.262°+ 72° = 60.738° 7y = 06317 + 1.1275i
2 60.738° + 72° = 132.738° z,=  —08771 + 09492
3 132.738° + 72° = 204.738° z3=  —11738 — 054081
4 204.738° + 72° = 276.738° Z, = 0.1516 — 1.2835i

Notice that if we add another 72°, we get 348.738°, which is equivalent to our first angle,
—11.262° because 348.738° — 360° = —11.262°. This is a good thing to check. The “next
angle” will always be equivalent to the first angle! If it isn’t, go back and check your work.

Roots fit on a circle: Notice that, since all of the roots of 2 — 3i have
the same magnitude, and their angles are 72° apart from each other,

they occupy equidistant positions on a circle with center (0,0) and
radius ¥r = 'V13 ~ 1.2924.
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Polar Graphs

Typically, Polar Graphs will be plotted on polar graph paper such as that
illustrated at right. On this graph, a point (r, 8) can be considered to be the
intersection of the circle of radius r and the terminal side of the angle 8 (see
the illustration below). Note: a free PC app that can be used to design and
print your own polar graph paper is available at www.mathguy.us.

Parts of the Polar Graph

The illustration below shows the key parts of a polar graph, along with a point, (4, g)

/
AN T Polat: // The Pole is the point (0, 0) (i.e., the origin).

2 n

IS 7 s V4

b I o The Polar Axis is the positive x-axis.

v P 1 r=d4

/ o4 ki The Line: 8 = = is the positive y-axis.

4 (pos x-axis) 2

Many equations that contain the cosine

\ 1 I function are symmetric about the x-axis.
\ Pole /
\ i“"'g'“) // Many equations that contain the sine
ol | - = function are symmetric about the y-axis.

st —

Polar Equations — Symmetry

Following are the three main types of symmetry exhibited in many polar equation graphs:

Symmetry about: Quadrants Containing Symmetry Symmetry Test™
Pole Opposite (I and I1I or ITand IV) Replace r with - in the equation
Left hemisphere (Il and III) or . . .
-axi Replace 6 with - 6 in th t
X-axis right hemisphere (1 and IV) eplace 6 wi in the equation
y-axis Upper hemisphere (I and II) or Replace (7, 6) with (=7, —60) in the
lower hemisphere (III and IV) equation

@ performing the indicated replacement results in an equivalent equation, the equation passes
the symmetry test and the indicated symmetry exists. If the equation fails the symmetry test,
symmetry may or may not exist.
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Graphs of Polar Equations

Graphing Methods

Method 1: Point plotting

Create a two-column chart that calculates values of r for selected values of 8. This is akin to a
two-column chart that calculates values of y for selected values of x that can be used to plot a
rectangular coordinates equation (e.g., vy = x? — 4x + 3).

The B-values you select for purposes of point plotting should vary depending on the equation
you are working with (in particular, the coefficient of 8 in the equation). However, a safe bet
is to start with multiples of 7T/6 (including 8 = 0). Plot each point on the polar graph and
see what shape emerges. If you need more or fewer points to see what curve is emerging,
adjust as you go.

If you know anything about the curve (typical shape, symmetry, etc.), use it to facilitate
plotting points.

Connect the points with a smooth curve. Admire the result; many of these curves are
aesthetically pleasing.

Method 2: Calculator

Using a TI-84 Plus Calculator or its equivalent, do the following:

Make sure your calculator is set to radians and polar functions. Hit the MODE
key; select RADIANS in row 4 and POLAR in row 5. After you do this, hitting
CLEAR will get you back to the main screen.

Hit Y= and enter the equation in the form r = f(8). Use the X,T,0,n key to
enter 0 into the equation. If your equation is of the form 72 = f(8), you may

need to enter two functions, r = ,/f(6) and r = —,/f(8), and plot both.

Hit GRAPH to plot the function or functions you entered in the previous step.

If necessary, hit WINDOW to adjust the parameters of the plot.

0 If you cannot see the whole function, adjust the X- and Y- variables (or use ZOOM).

0 If the curve is not smooth, reduce the value of the Ostep variable. This will plot more
points on the screen. Note that smaller values of BOstep require more time to plot the
curve, so choose a value that plots the curve well in a reasonable amount of time.

0 If the entire curve is not plotted, adjust the values of the @min and @max variables until
you see what appears to be the entire plot.

Note: You can view the table of points used to graph the polar function by hitting 2ND — TABLE.
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Circle

-

Equation: r = asinf

Location:
above x-axisif a > 0
below x-axisif a < 0

Radius: a/2

Symmetry: y-axis

Rose

Polar Functions

Graph of Polar Equations

Equation: r = acosf Equation: r = a
Location: Location:
right of y-axisif a >0 Centered on the Pole
left of y-axis if a <0
Radius: a/2 Radius: a
Symmetry: x-axis Symmetry: Pole, x-axis,

y-axis

r=4/sin20

r=4sin50

Characteristics of roses:

e Equation: r = asinnd

0 Symmetric about the y-axis

e Equation: r = acosné

0 Symmetric about the x-axis

e Contained within a circle of radius r = a

e Ifnisodd, the rose has n petals.

e Ifniseven the rose has 2n petals.

e Note that a circle is a rose with one petal (i.e, n = 1).
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Polar Functions

Graphs of Polar Equations

Limagon of Pascal

Equation: r =a + bsin @

Location: bulb above x-axisif b > 0
bulb below x-axisif b < 0

Symmetry: y-axis

Four Limagon Shapes

Equation: r =a + bcos 6

Location: bulb right of y-axis if b > 0
bulb left of y-axis if b <0

Symmetry: x-axis

a<b a=>hb
Inner loop “Cardioid”

Four Limagon Orientations (using the Cardioid as an example)

r=2-2sind

2

b<a<?2b a=>2b
Dimple No dimple

sine function sine function
b>0 b<O

cosine function cosine function
b>0 b<O

Version 2.2 Page 72 of 109 June 12, 2018



Chapter 9 Polar Functions

Graph of Polar Equations

Lemniscate of Bernoulli

1% = 16.cos 20

The lemniscate is the set of all points

I for which the product of the
distances from two points (i.e., foci)

which are “2¢” apart is c2.

r’ =16 sin 20

Characteristics of lemniscates:
e Equation: 7% = a?sin 20
O Symmetric about the line y = x

e Equation: r? = a? cos 26
O Symmetric about the x-axis

e Contained within a circle of radius r = a

Spirals
(,__
X \"%_iz‘v‘a‘n‘&‘s‘v
r = 0
P . . a
: Hyperbolic Spiral r = 2
Archimedes’ Spiral Fermat’s Spiral T Lo I i
r = a6 r? =a%0
a2
Lituus r? = v
Characteristics of spirals:

e Equation: v? =a”8, b >0

0 Distance from the Pole increases with 6

b
a
e Equation: r? =5 b>0

0 Hyperbolic Spiral (b = 1): asymptotic to the line a units from the x-axis
O Lituus (b = 2): asymptotic to the x-axis

¢ Not contained within any circle
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Graphing Polar Equations — The Rose
Example 9.1: r = 4 sin 20

This function is a rose. Consider the forms r = asin b8 and r = a cos b6.

The number of petals on the rose depends on the value of b.
e If bis an even integer, the rose will have 2b petals.
e If bisan odd integer, it will have b petals.

Let’s create a table of values and graph the equation:

. Because this function involves an
r =4sin260
argument of 268, we want to start by
0 r 0 r looking at values of 0 in [0, 21| =+
0 0 2 = [0, m]. You could plot more
/12 5 71/12 _9 points, b},lt this interval is sufficient
to establish the nature of the curve;
/6 3.464 2m/3 —3.464 so you can graph the rest easily.
/4 4 3n/4 -4
77.'/3 3.464 57T/6 —3.464 Once symmetry is
51m/12 2 11m/12 -2 established, these values
are easily determined.
/2 0 s 0

The values in the table
generate the points in the Blue points on the graph
correspond to blue values

in the table.

two petals right of the y-axis.

Knowing that the curve is a

rose allows us to graph the Orange points on the

other two petals without graph correspond to

calculating more points. orange values in the table.

The four Rose forms:

r=4/5in 20
s

r=4sin50
r=4cos 20
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Polar Functions

Graphing Polar Equations — The Cardioid

Example9.2: r =2 4+ 2sin0

This cardioid is also a limagon of form r = a + b sin 8 with a = b. The use of the sine function

indicates that the large loop will be symmetric about the y-axis. The + sign indicates that the large

loop will be above the x-axis. Let’s create a table of values and graph the equation:

r=2+2sinf

0 r 0 r

0 2
/6 3 7m/6 1
/3 3.732 41t/3 0.268
/2 4 3m/2 0
2r/3 3.732 5r/3 0.268
5mt/6 3 11 /6 1

T 2 21 2

The portion of the graph
above the x-axis results
from 6 in Q1 and Q2,
where the sine function is
positive.

Similarly, the portion of
the graph below the x-axis
results from 6 in Q3 and
Q4, where the sine
function is negative.

The four Cardioid forms:

Generally, you want to look at
values of 8 in [0, 2m]. However,
some functions require larger
intervals. The size of the interval
depends largely on the nature of the
function and the coefficient of 6.

Once symmetry is
established, these values
are easily determined.

Blue points on the graph
correspond to blue values
in the table.

Orange points on the
graph correspond to

orange values in the table.

r=2+2cosf /

N
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Polar Functions

Converting Between Polar and Rectangular Forms of Equations

Rectangular to Polar

To convert an equation from Rectangular Form to Polar Form, use the following equivalences:

Substitute r cos@ for x

Substitute rsin@ for y

x =rcosf
y =rsinf
x2+y?=r? Substitute 72 for x2 + y?

Example 9.3: Convert 8x — 3y + 10 = 0 to a polar equation of the form r = f(6).

Starting Equation:

Substitute x =rcosf and y = rsin6:

Factor out 7:

Divide by (8 cos 8 — 3sin 8):

Polar to Rectangular

8x—-3y+10=0
8:rcosf —3-rsinfd+10=0
r (8cosf —3sinf) = —-10

-10
r_8c056—35in0

To convert an equation from Polar Form to Rectangular Form, use the following equivalences:

X X
cosf =— Substitute — for cos@

r r
sinf = 4 Substitute 4 for sin@

r T
r? =x?+y? Substitute x? + y? for 72

Example 9.4: Convert r =8 cos 6 + 9 sin 8 to a rectangular equation.

Starting Equation:

Substitute cos @ = ; sinfg = 3;/:
Multiply by r:

Substitute 72 = x2 + y?2:
Subtract 8x + 9y:

Complete the square:

Simplify to standard form for a circle:
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Chapter 9 Polar Functions

Parametric Equations

One way to define a curve is by making x and y (or r and @) functions of a third variable, often t (for
time). The third variable is called the Parameter, and functions defined in this manner are said to be
in Parametric Form. The equations that define the desired function are called Parametric Equations.

In Parametric Equations, the parameter is the independent variable. Each of the other two (or more)
variables is dependent on the value of the parameter. As the parameter changes, the other variables
change, generating the points of the function.

Example 9.5: A relatively simple example is a circle, which we can define as follows:

Circle: x =rcost y=rsint

As the variable t progresses from 0 to 2, a circle of radius r is born.

The circle in the illustration at right can be defined in several ways:

Cartesian form: x?+y? =16
Polar form: r=4
Parametric form: x =4cost y =4sint

Familiar Curves

Many curves with which the student may be familiar have parametric forms. Among those are the

following:
Curve Cartesian Form Polar Form Parametric Form
Pj';\rabo_la with horizontal y=a(x—h)?2+k = P' x = 2pt
directrix 1 £sin6 y = pt?
ep
Ellipse with horizontal (x — h)? + (v —k)? _q "= 1fe coso X =acost
major axis a? b? O<e<1) y = bsint
. . 5 5 _ ep _ "
:\;it:\:::)slz ::(litsh horizontal (x ;zh) _ (v ;Zk) _, r= TTe cosd X : asec
(e > 1) y =btant

As can be seen from this chart, sometimes the parametric form of a function is its simplest. In fact,
parametric equations often allow us to graph curves that would be very difficult to graph in either
Polar form or Cartesian form. Some of these are illustrated on the next page.
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Some Functions Defined by Parametric Equations

(Star Wars fans: are these the “oids” you are looking for?)

Polar Functions

The graphs below are examples of functions defined by parametric equations. The equations and a

brief description of the curve are provided for each function.

Deltoid

Nephroid

Parametric equations:

X = 2acost+ acos?2t

y = 2asint — asin 2t

The deltoid is the path of a
point on the circumference
of a circle as it makes three
complete revolutions on the

inside of a larger circle.

Parametric equations:

X

y

Version 2.2

Parametric equations:

y = a(3sint — sin 3t)

The nephroid is the path of a
point on the circumference
of a circle as it makes two
complete revolutions on the

outside of a larger circle.

Cycloid

x = a(3cost — cos 3t)

Astroid

acos3t

asin3t

Parametric equations:

The astroid is the path of a
point on the circumference
of a circle as it makes four
complete revolutions on the
inside of a larger circle.

|
1 T 1 r T

m 2m

a(t —sint)
a(l—cost)

The cycloid is the path of a point on the circumference of a circle as the

circle rolls along a flat surface (think: the path of a point on the outside
of a bicycle tire as you ride on the sidewalk). The cycloid is both a
brachistochrone and a tautochrone (look these up if you are interested).
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Chapter 10 Vectors

Vectors

A vector is a quantity that has both magnitude and direction. An example would be wind
blowing toward the east at 30 miles per hour. Another example would be the force of a 10 kg
weight being pulled toward the earth (a force you can feel if you are holding the weight).

Special Unit Vectors

We define unit vectors to be vectors of length 1. Unit vectors having the direction of the
positive axes are very useful. They are described in the chart and graphic below.

Unit Vector Direction Graphical S i
i positive x-axis representation of jos
i positive y-axis unit vectors 1 and | L >
in two dimensions. TG
k positive z-axis s

Vector Components

The length of a vector, v, is called its magnitude and is represented by the symbol ||v||. If a
vector’s initial point (starting position) is (x4, y1,Z1), and its terminal point (ending position) is
(x2,¥2,2,), then the vector displaces a = x, — x; in the x-direction, b = y, — y; in the y-
direction, and ¢ = z, — z; in the z-direction. We can, then, represent the vector as follows:

v =ai+ bj+ck

The magnitude of the vector, v, is calculated as:

[lv]| = Va2 + b?% + c2

Space

| Diagonal
If this looks familiar, it should. The magnitude of a vector in three ) T

|
dimesnsions is determined as the length of the space diagonal of a i

”,
rectangular prism with sides a, b and c. y Face
Diagonal

In two dimensions, these concepts contract to the following:
vV = ai + bj ||[v]l = Va? + b?

In two dimensions, the magnitude of the vector is the length of the hypotenuse of a right
triangle with sides a and b.
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Vector Properties

Vectors

Vectors have a number of nice properties that make working with them both useful and

relatively simple. Let m and n be scalars, and let u, v and w be vectors. Then,
e If v=ai+ bj,then a =||v|| cosf and b = ||v|| sinb

e Then, v=||v|l cos@ i + ||v|l sinf j (note: this formula is often
used in Force calculations)

e Ifu=a;i+bjjandv = a,i+ b,j,thenu+v = (a, +a,)i+ (b; + b,)j

e If v =ai+ bj, then mv = (ma)i + (mb)j

4

= ai + bj

\ 0

a

e Define 0 to be the zero vector (i.e., it has zero length, so that a = b = 0). Note: the

zero vector is also called the null vector.

Note: v = ai + bj can also be shown with the following notation: v = (a, b). This notation is

useful in calculating dot products and performing operations with vectors.

Properties of Vectors

e 0+v=v+0=v Additive Identity

o Vv+(—v)=(-Vv)+v=0 Additive Inverse

e ut+tv=v+u Commutative Property
e u+(v+w)=@+v)+w Associative Property

e m(nu) = (mn)u Associative Property

e m(u+v)=mu+mv Distributive Property

e (mM+n)u=mu+nu Distributive Property

e 1(v)=v Multiplicative Identity

Also, note that:

o |mv| =|m|||v]|l Magnitude Property

e Unit vector in the direction of v
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Chapter 10 Vectors

Vector Properties — Examples

Example 10.1: u =-3i-6j, v==6i+8j; Findu +v.
An alternative notation for a vector in the form ai + bj is (a, b). Using this alternative

notation makes many vector operations much easier to work with.

To add vectors, simply line them up u=(-3-6)

vertically and add: v={( 6, 8)
u+v=(-3+6-6+8)

u+v=(32)=3i+2j

Example 10.2: u =-2i-7jand v = -4i - 21j; Find ||[v — u]|.

v =(—4,-21) Subtracting u is the same as adding —u.
+ —u=(2 7) \ To get —u, simply change the sign of each
v—u=(-2,-14) element of u. If you find it easier to add
than to subtract, you may want to adopt
lv—ul|l = \/(_2)2 + (—14)? this approach to subtracting vectors.

— V200 = VI00 - VZ = 10V2

Example 10.3: Find the unit vector that has the same direction as the vector v = 5i - 12j.

A unit vector has magnitude 1. To get a unit vector in the same direction as the original
vector, divide the vector by its magnitude.

e un v 5i —12j 5i —12j 5 12
e unit vector Is: == = —_ — — —
vl V524122 13 13 13)
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Vector Properties — Examples

Vectors

Example 10.4: Write the vector vin terms of i and jif ||v|| = 10 and direction angle 6 = 120°.

It helps to graph the vector identified in the problem.

The unit vector in the direction 8 = 120° is:

(cos 120°,sin 120°) = { 1ﬁ)— 1'+\/§'
cos ,Sin = 5o = 21 2]

Multiply this by ||[v|| = 10 to get v:

1. V3
v=10<—§i+7j>=—5i+5\/§j
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Vector Dot Product

The Dot Product of two vectors, u = a4i + b;j + c;k and v = a,i + b,j + ¢, K, is defined as
follows:

uov=_(a;az)+ (by-by)+ (c;-cz)

It is important to note that the dot product is a scalar (i.e., a number), not a vector. It describes
something about the relationship between two vectors, but is not a vector itself. A useful
approach to calculating the dot product of two vectors is illustrated here:

u= ali + bli + Clk = <a1, bl’ C1> } alternative
vector
V = a,i + byj + ;K = (ay, by, ¢3) notation General Example
In the example at right the vectors are lined up vertically. (ay, by, cq) (4,-3,2)
The numbers in the each column are multiplied and the o (ay, by, ) 0(2,—2,5)

results are added to get the dot product. In the example,

(4,-3,2) 0 (2,—2,5) = 8+ 6 + 10 = 24 a,a, + bib, + cic, 8+6+10

=24

Properties of the Dot Product

Let m be a scalar, and let u, vand w be vectors. Then,

e Qou=uc0=0 Zero Property

e joj=jok=Kkoi=0 i,j and Kk are orthogonal to each other.
e uUov=Vou Commutative Property

e uou=|ul? Magnitude Square Property

e uo(v+w)=(uov)+ (uow) Distributive Property

e m(uov)=(mu)ov=uo(mv) Multiplication by a Scalar Property

More properties:
e Ifuocv=20 and u=# 0 and v # 0, then uand v are orthogonal (perpendicular).

e [f thereis a scalar m such that mu = v, then u and v are parallel.

uov
e If O isthe angle betweenuandv, then cosd =—. M
llull {[v]l v
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Vector Dot Product — Examples

Example 10.5: u=-5i+3j, v="5i-6j, w=-3i+12j; Findu-w+v-w.

The alternate notation for vectors comes in especially handy in doing these types of
problems. Also, note that: (u-w)+(v-w)=(u+v)ow. Let’s calculate (u+v) o w.

u= (-5 3) \

+ v={ 5—6) Using the distributive property for dot
products results in an easier problem
utv={( 0-3) with fewer calculations.
ow=(-3, 12)

(U+v)ow=(0-[-3D+(=3-12) =0—36=—-36

Example 10.6: Find the angle between the given vectors: u=i-j, v=4i+05j.

COSG=& u:(11_1>
lull v ov=(4 5
0° < 0 < 180° wev=(-4+(-1-5=-1

lull =12+ (=12 = V2
Ivll = V42 + 52 = Va1

UovV -1 -1

lull IVl — VZ Va1 _ v8z

0 = cos™! (—) = 96.3°
V82

cosf =

Example 10.7: Are the following vectors parallel, orthogonal, or neither? v =4i + 3j, w = 3i - 4j

If vectors are parallel, one is a multiple of the other; also v o w = ||v| ||w]| .

If vectors are perpendicular, their dot product is zero.

Calculate the dot product.

v=<(4 3)
o w=(3,—4)

Vow=(4-3)+ @B [-4) =12+ (=12) =0

So, the vectors are orthogonal.
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Vector Dot Product — Examples

Vectors

Example 10.8: Are the vectors are parallel, orthogonal, or neither. v = 3i + 4j, w = 6i + 8j

Vector Multiple Approach ) ]
It is clearly easier to check whether one
v =(3,4) vector is a multiple of the other than to
w = (6, 8) use the dot product method. The

Clearly, w = 2v

The vectors are parallel.

student may use either, unless instructed
to use a particular method.

Dot Product Approach

To determine if two vectors are parallel using the dot product, we check to see if:

vow = |lv| [[wl]
v =(3,4)
o w=(6,8)

vow=18+32=50

vl =V (3)*+(4)? =5
lw]| =+/(6)2+(8)2 =10

Ivil llwll = 5-10 =50 = vow

The vectors are parallel.

Cross Product Approach (see Cross Product below)

To determine if two vectors are parallel using the cross product, we check to see if:

vxw = 0

Vi V2

Wy W2| = (vawy — VW)

VW :l
VW = |2 g —(3-8-4-6)=0

The vectors are parallel.
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Applications of the Vector Dot Product

Vector Projection

The projection of a vector, v, onto another vector w, is obtained using the dot product. The
formula used to determine the projection vector is:

o= (i) » = ()
projyVv = TE w=\"ww/ W

VoW

llw|?

Notice that ( ) is a scalar, and that proj,,v is a vector.

In the diagram at right, vi = projv.

Orthogonal Components of a Vector (Decomposition)

A vector, v, can be expressed as the sum of two orthogonal vectors v; and v, as shown in the
above diagram. The resulting vectors are:

. (vow) g
Vi = proj,v = w an Vy =V—Vy
v llwl|?

v, is parallel to w v, is orthogonal to w

Work

Work is a scalar quantity in physics that measures the force exerted on an object over a
particular distance. It is defined using vectors, as shown below. Let:

e F be the force vector acting on an object, moving it from point A to point B.
e AR be the vector from 4 to B.

e O bethe angle between F and AB.

Then, we define work as:
Both of these formulas are useful.

W =FoAB Which one to use in a particular
w = ||F|| ”E” cos 0 situation depends on what
/ /\ \ information is available.
Magnitude Distance Angle between
of Force Traveled Vectors
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Applications of Vectors — Examples

Example 10.9: The magnitude and direction of two forces acting on an object are 60 pounds,
N 40° E, and 70 pounds, N 40° W, respectively. Find the magnitude and the direction angle of
the resultant force.

This problem requires the addition of two vectors. The approach used here is:
1) Convert each vector into its i and j components, call them x and y,
2) Add the resulting x and y values for the two vectors, and
3) Convert the sum to its polar form.

Keep additional accuracy throughout and round at the end. This will prevent error
compounding and will preserve the required accuracy of your final solutions.

Step 1: Convert each vector into its i and j components

Let F; be a force of 60 Ibs. at bearing: N 40° E N
From the diagram at right,
6 = 90° — 40° = 50° 10° Y .
x = 60 cos50° =38.5673 )
y = 605sin 50° = 45.9627 :
Let F, be a force of 70 Ibs. at bearing: N 40° W
From the diagram at right, N
@ = 90°—40° = 50° 70
x = —=70cos(50°) = —44.9951 y 10°
y = 70sin(50°) =53.6231
Step 2: Add the results for the two vectors
F; = ( 38.5673,45.9627) \
F, = (—44.9951,53.6231)
Fi + F, =( —6.4278,99.5858) i
99.5858
Step 3: Convert the sum to its polar form 1h
Direction Angle = 6 = tan™! (?Ziiiz) = 93.7° 64279

Magnitude = r = \/(—6.4278)% + 99.58582 = 99.79 Ibs.
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Applications of Vectors — Examples

Example 10.10: One rope pulls a barge directly east with a force of 79 newtons, and another
rope pulls the barge directly north with a force of 87 newtons. Find the magnitude and
direction angle of the resulting force acting on the barge.

The process of adding two vectors whose headings are north, east,

west or south (NEWS) is very similar to converting a set of rectangular

coordinates to polar coordinates. So, if this process seems familiar, y 87
that’s because it is. a

Magnitude = r = \/(79)2 + (87)? = 117.52 newtons "

Direction Angle = 6 = tan™?! (%) = 47.8°

Example 10.11: A force is given by the vector F = 5i + 2j. The force moves an object along a

straight line from the point (5, 7) to the point (18, 13). Find the work done if the distance is
measured

in feet and the force is measured in pounds.

For this problem it is sufficient to use the work formula, W = F - AB

We are given F = (5, 2).

We can calculate AB as the difference between the two given points.

(18,13)
=(5 7)
AB = (13, 6) Note that the difference between two points is a vector.

Then, calculate W = F o AB
F=(52)
o AB = (13,6)
W =FoAB = (5-13) + (2-6) = 77 foot pounds
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Applications of Vectors — Examples

Vectors

Example 10.12: Decompose v into two vectors v4 and v,, where v; is parallel to w and v, is

orthogonaltow. v=i-4j, w=2i+]j

The formulas for this are:

. (Vow)
Vi = projyVv = w
v llwl|?

Vo = V—Vq

Let’s do the calculations.
v =(1,-4)
ow=(2, 1)
vow=(1-2)+(-4-1)=-2

Iwllz =22 +12 =5

Then,

o (W) (22 _(_* 2

4- -
V1=—El _E]

And,
v={(1,-4)

4 2
+ -vi=( 3

9 —18
V2=V—V1=(§,—5>
9 18
v, =—1 ——
2775 5]
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Vector Cross Product

Cross Product

In three dimensions,

let: u=uyi + uyj + uzk and v=vji + v,j + v3k M
v

Then, the Cross Product is given by:
i j Kk
U; Uz Uz
Vi V2 V3

uxv = = (u2V3 - U3V2) i+ (U3V1 - U1V3) ] + (U1V2 - UZVI) k

uxv=|ull|lv]] siné n

Explanation: The cross product of two nonzero vectors in three dimensions produces a third
vector that is orthogonal to each of the first two. This resulting vector u x v is, therefore,
normal to the plane containing the first two vectors (assuming u and v are not parallel). In the
second formula above, n is the unit vector normal to the plane containing the first two vectors.
Its orientation (direction) is determined using the right hand rule.

Right Hand Rule

Using your right hand:
e Point your forefinger in the direction of u, and
e Point your middle finger in the direction of v.
Then:
e Your thumb will point in the direction of u x v.

In two dimensions,

Let: u =uyi + uyj and v=wvi + v,j

Uy

Then, uxv = |
\41

Uz C . . .
v | = (uy;v, —u,v,) whichis a scalar (in two dimensions).
2

The cross product of two nonzero vectors in two dimensions is zero if the vectors are parallel.
That is, vectors u and v are parallel if uxv = 0.

The area of a parallelogram having u and v as adjacent sides and angle 6 between them:

Area = ||u]| [|v]| sin®.
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Vector Cross Product

Properties of the Cross Product

Let m be a scalar, and let u, v and w be vectors. Then,

e Oxu=ux0=0 Zero Property

o ixj=k jxk=1i kxi=j i,j and k are orthogonal to each other

e jxi=-k kxj=-i ixk=-j Reverse orientation orthogonality

e uxu=20 Every non-zero vector is parallel to itself
® uUxXv=-vxu Anti-commutative Property

e ux(v+w)=((uxv)+ (uxw) Distributive Property

e (ut+tv)xw=(uxw)+ (vxw) Distributive Property

e (mu)xv =ux(mv) = m(uxv) Scalar Multiplication

More properties:

o If uxv=0, thenuand v are parallel. v

lluxv]|

e |[f O isthe angle betweenuandv, then sinf = llall [|v]| ©
ujf |[v
uxv

Angle Between Two Vectors

Notice the similarities in the formulas for the angle between two vectors using the dot product
and the cross product:

uov  Juxvl
cosfg =———— sing =——
lall v [l v
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Vector Triple Products

Scalar Triple Product

Let: u = uli + uZi + U3k, vV = Vli + Vzi + V3k, W = Wli + sz + W3k.

Then the triple product u o (vxw) gives a scalar representing the volume of a parallelepiped
(a 3D parallelogram) with u, v, and w as edges:

U Uz Ug
uo(vxw) = |Vi Vy V3

W Wy W3
uo(vxw) = (UXV) o W

Note: vectors u, v, and w are coplanar if and only if u o (vxw) = 0.

Other Triple Products
uo (uxv)=vo(uxv)=0 Duplicating a vector results in a product of 0
ux(vxw) = (wowv-—(uoev)w
(uxv)xw = (uoew)v-—(vewu

uo(vxw)=vo(WxX)= wWo (XXV)

No Associative Property
The associative property of real numbers does not translate to triple products. In particular,
(uov) -w #= u- (vow) No associative property of dot products/multiplication

ux(vxw) # (Uxv)xw No associative property of cross products
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Summary of Trigonometric Formulas

Appendix A

Summary of Trigonometric Formulas

Trigonometric Functions
(x- and y- axes)

Pythagorean Identities
(for any angle 8)

sin?@ + cos?6 =1
sec’6 = 1+ tan?#6

csc?9 = 1+ cot?H

Cofunctions (in Quadrant I)
i _ T

sin 6 —cos(E—Q) =
Vs

tan @ =cot(5—9) S

secH =csc(g—0) S

Version 2.2

. y . 1
sin® == sin9 =
r csco
1
cosO =— cosO =
secO
y 1 sin©
tan9 == tan0 = tan 09 =
X cotO cos©
X 1 cos 9
cotf = — cotO = cotO = —
y tan 0 sin©
secH =— secH =
cos 0
r 1
cscO =— csc =——
y sin 6
Sine-Cosine Relationship Key Angles

sin (6 + %) = cos 0

sin B = cos (6 — %)

cos 8 = sin (g— 9)
cotf = tan (g — 9)

cscl = sec (g — 8)

Page 93 of 109

(180° = mr radians)

0° = 0 radians

T
30° = g radians

45° = = radi
= 4 radlans

T
60° = = radians

T
90° = 5 radians
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Appendix A

Trigonometric Functions (Right Triangle)

Summary of Trigonometric Formulas

A SOH-CAH-TOA
. opposite . .
Sln = _opposite sind = - sinB = -
hypoteneuse
b C adjacent
coOS = —— CosA = - cosB = -
hypoteneuse
opposite b
_l tan = % tan 4 = % tanB = "
C = B adjacen

Laws of Sines and Cosines (Oblique Triangle)

Law of Sines (see illustration below)

Law of Cosines (see illustration below)

a’ = b?> 4+ ¢? — 2bc cos A
b? = a?> + ¢? — 2ac cosB

c? = a? + b? — 2ab cosC

a . b . c
sin A sin B sin C
C b
B a
Version 2.2 Page 94 of 109
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Appendix A

Angle Addition Formulas

sin (a + B) =sinacosfB + cosasinf
sin (¢ — B) =sinacosfB — cosasinf

tana + tanf
1—-tana tanp

tan (a +pB) =
Double Angle Formulas
sin 20 = 2sinf cos @

2 tan@

tan 20 = ———
an 1 —tanZ26

Half Angle Formulas

. 0 1—cos@
sin —= + /—
2 2

0 n 1+ cos@ Signs of Trig Functions
cCoOS - = = |——
2 2 By Quadrant
1—-cosé@ sin + sin +
tan - tan +
__ 1-cos# <
sin @ sin - sin -
) cos - cos +
sin @
= — tan + tan -
1+ cos @
Version 2.2 Page 95 of 109

Summary of Trigonometric Formulas

cos (¢ + f) = cosacosf — sinasinf
cos (¢ — ) = cosacosf + sinasinf

tan (a —p) =

tana —tanf

cos 20 = cos?6 —sin% 60

= 1—2sin%8
= 2cos?06—1

1+tana tanf

The use of a “+” or

sign in the half angle

formulas depends on the quadrant in which

0
the angle E resides. See chart below.

v
x
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Appendix A Summary of Trigonometric Formulas

Power Reducing Formulas

1+ cos 26

cos? 6l =
2

1 — cos 26

tan? 6 =
1+ cos 26

Product-to-Sum Formulas
[cos(a—B) — cos(a+ B) ]

sina-sinf8 =

cosa-cosff = = [cos(a—B) + cos(a+ pB)]

[ sin(a + B) + sin(a— ) ]

sina-cosf =

NIR NlR e NIR

[ sin(a + B) — sin(a— ) ]

cosa-sinf

Sum-to-Product Formulas

5)-eos(35)
= sing =2 () con ()
+B>-cos(“;ﬁ>

cosa— cosf = —Z'Sin(azﬁ)-sin({;ﬂ)

a
sina + sinf = 2-sin<

a
cosa+ cosf = 2-cos<
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Appendix A Summary of Trigonometric Formulas

Triangle Area Formulas

Geometry
A= ! bh
2

where, b is the length of the base of the triangle.
h is the height of the triangle.

Heron’s Formula

A= \/s(s —a)(s—b)(s—o¢)

where, s:%P:%(a+b+c).

a, b, c are the lengths of the sides of the triangle.

Using Both Lengths and Angles

A - 1 a?-sinB-sinC 1 b?%-sinA-sinC 1 c?-sinA-sinB
2 sin A 2 sin B 2

sinC

) 1 ) 1 )
A = Eab sinC = Eac sinB = Ebc sinA

Coordinate Geometry

Let three vertices of a triangle in the coordinate plane be: (x1,vy1), (x3,v2), (x3,¥3).

1 X1 y1 1
A = E X2 Y2 1
x3 y3 1
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Appendix A Summary of Trigonometric Formulas

Complex Numbers in Polar Form

e = cos@ +isinf = cisf

z=a+bi=7r(cosf +isinf) =rcisf =r-e'

Operations

Let: zy = a4 + byi =1ry(cos@ +isinf)

Z, = a, + byi = ry(cos @ + ising)

Multiplication:  z; -z, =1, 1, [cos (B + @) + isin(0 + ¢)]

Division: Zy + 7, =:—1 [cos (8 — @) + isin(6 — ¢)]
2
Powers: z™ = r"(cosnb + isinnh)
Roots: Vz=2z =Nr- [cos (%) + isin (%) ],

k variesfromOton —1

Note: z has n distinct complex n-th roots: z,, z1, Z3, ..., Zp_1
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Appendix A Summary of Trigonometric Formulas

Vectors

i,j, k are the unit vectors in the x, y, z directions respectively.

2 dimensions 3 dimensions

vV = ai + bj v =ai+ bj+ck

Ivll = Va? + b2 Ivll = VaZ + b% + ¢

Properties

O+v=v+0=v Additive Identity

v+ (—v)=(-v)+v=0 Additive Inverse

ut+tv=v+u Commutative Property

u+(v+w)=@u+v)+w Associative Property

m(nu) = (mn)u Associative Property

m(u +v) = mu+ mv Distributive Property

(m+n)u =mu+ nu Distributive Property

1(v) =v Multiplicative Identity

[|mv|| = |m]| ||v]| Magnitude Property
\

— Unit vector in the direction of v

Version 2.2 Page 99 of 109 June 12, 2018



Appendix A Summary of Trigonometric Formulas

Vector Dot Product

Let: u = aqi + b;j + c;K and v = a,i + byj + ¢,k

uov=_(a; a;)+ (b by)+(c;cz)

Properties

Qocu=uc0=0 Zero Property

icj=jok=Koi=0 i,j and k are orthogonal to each other.
Uuov=vou Commutative Property

uou = ||ul? Magnitude Square Property

ue(v+w)=(uov)+ (uew) Distributive Property

m(uev) = (mu)ov=uoc(mv) Multiplication by a Scalar Property

Uo-v

cosf =———
[[all [v]|

0 is the angle between u and v

Vector Projection

o= (i) w = (%)
proj,v = TE w=\lwow/ W

Orthogonal Components of a Vector

_ (Vow) g
Vi = proj,v = w an Vo, =V—Vy
v llwl|?

Work

F is the force vector acting on an object, moving it from point A to point B.
W =FoAB

W = ||F|| ||E|| cosf 6 is angle between F and AB.
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Appendix A Summary of Trigonometric Formulas

Vector Cross Product

2 Dimensions
Let: u =uyi + uyj and v=wvi + v,j
u; Uz
Then, uxv = |V1 V2| = (U vy, — u,vy)
Area of a parallelogram having u and v as adjacent sides and angle 6 between them:

Area = ||u]| ||v]| sin©6

3 Dimensions

Let: u =uw;i + uyj + uzk and v=wvii + v,j + v3k
i j k
u; u, Uuj
Vi Va2 V3

= (upvz —uzvy) i+ (uzvy —uyvz)j + (v, —upv) k

uxv=|ull|lv]] siné n

n is the unit vector normal to the plane containing the first two vectors with orientation
determined using the right hand rule.

Properties
Oxu=ux0=0 Zero Property
ixj=k jxk=1i kxi=j i,j and k are orthogonal to each other
jxi=-k kxj=-1, ixk=—j Reverse orientation orthogonality
uxu=20 Every non-zero vector is parallel to itself
Uxv=-vxu Anti-commutative Property
ux(v+w)=(uxv)+ (uxw) Distributive Property
(u+v)xw=(uxw) + (vxw) Distributive Property
(mu)xv = ux(mv) = m(uxv) Scalar Multiplication
sinf = M 0 is the angle between u and v

llull [IvlI
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Appendix A Summary of Trigonometric Formulas

Vector Triple Products

Let: u = uqi + uyj + uzk, v=vii + v,j + v3K, w=w;i + w,j + wik.

Scalar Triple Product

u u; Uus
ViV V3
Wiy Wy W3

uo(vxw)

uo(vxw) = (Uxv) o w

Other Triple Products

uo (uxv)=vo(uxv)=0
ux(vxw) = (woewv-—(uov)w
(uxv)xw = (uow)v-—(vewu

Uo(VXw) = vo(WxX)= Wo (XXV)
No Associative Property

(uov) -w = u- (vow)

ux(vxw) # (Uxv)xw
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Appendix B

Solving the Ambiguous Case — Alternative Method

How do you solve a triangle (or two) in the ambiguous case? Assume the information given is the
lengths of sides a and b, and the measure of Angle A. Use the following steps:

Step 1: Calculate the sine of the missing angle (in this development, angle B). Step 1: Use
a b

Step 2: Consider the value of sin B: =
sin A sin B

e |IfsinB > 1, then we have Case 1 —there is no triangle. Stop here.

Case 1 .
Key values on a number line.

a
p | | 5N
a < 1 1 7

A —>

e IfsinB =1,then B = 90° and we have Case 2 — a right triangle. Proceed to Step 4.

Case 2
Key values on a number line.

a
b a p | I

< |
b

N

A —>

e IfsinB < 1, then we have Case 3 or Case 4. Proceed to the next step to determine which.
Step 3: Compare a and b.

e If a < b, then we have Case 3 —two triangles. Calculate the values of each angle B, using the
Law of Sines. Then, proceed to Step 4 and calculate the remaining values for each triangle.

Case 3
Key values on a number line.

b a
| |

e 5
S | | 7

A — b

e If a > b, then we have case 4 — one triangle. Proceed to Step 4.
Case 4

Key values on a number line.
b a a
yi | | N
Y I I 4

A — b
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Appendix B Solving the Ambiguous Case — Alternative Method

Step 4: Calculate C. At this point, we have the lengths of sides a and b, and the measures of Angles A
and B. If we are dealing with Case 3 — two triangles, we must perform Steps 4 and 5 for each angle.

Step 4 is to calculate the measure of Angle C as follows: c=180°-A—-B

Step 5: Calculate c. Finally, we calculate the value of ¢ using the Law of Sines.

a c asinC b c bsinC
: = — = ; or - = — = =—
sin4 sinC sin A sinB sinC sin B

Note: using a and £A may produce more accurate results since both of these values are given.

Ambiguous Case (Alternative Method) Flowchart

Start Here

Case 4

no

Case 3

Two triangles

Calculate C, and then c.
Steps 4 and 5, above
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Appendix C

Summary of Rectangular and Polar Forms

Summary of Rectangular and Polar Forms

Rectangular Form Polar Form
Coordinates Form (x,y) (r,0)
Conversion x =rcosf r=1x2+ 32
=rsinf
Y 0 =tan~?! (X)
X
Complex Form a + bi r(cos@ + isinf) or
Numbers r cisf
Conversion a=rcosf r= /az + b2
b =rsinf b
6 =tan?! (—)
a
Vectors Form ai + bj l|v]| 26
[lv]| = magnitude
6 = direction angle
Conversion a = ||v|| cos@ vl = [a? + b2
b = ||v| sin8 b
6 =tan?! (—)
a
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